Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Genetic basis of fitness differences in natural populations

Abstract

Genomics profoundly influences current biology. One of many exciting consequences of this revolution is the potential for identifying and studying the genetic basis of those traits affecting fitness that are key to natural selection. Recent studies using a multitude of genomic approaches have established such genotype–phenotype relationships in natural populations, giving new insight into the genetic architecture of quantitative variation. In parallel, an emerging understanding of the quantitative genetics of fitness variation in the wild means that we are poised to see a synthesis of ecological and molecular approaches in evolutionary biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Linking phenotypes to genotypes.

Similar content being viewed by others

References

  1. Mitchell-Olds, T. & Schmitt, J. Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441, 947–952 (2006)

    Article  CAS  ADS  Google Scholar 

  2. Rice, W. R. Sexually antagonistic male adaptation triggered by experimental arrest of female evolution. Nature 381, 232–234 (1996)

    Article  CAS  ADS  Google Scholar 

  3. Chippindale, A. K., Gibson, J. R. & Rice, W. R. Negative genetic correlation for adult fitness between sexes reveals ontogenetic conflict in Drosophila. Proc. Natl Acad. Sci. USA 98, 1671–1675 (2001)

    Article  CAS  ADS  Google Scholar 

  4. Fedorka, K. M. & Mousseau, T. A. Female mating bias results in conflicting sex-specific offspring fitness. Nature 429, 65–67 (2004)

    Article  CAS  ADS  Google Scholar 

  5. Foerster, K. et al. Sexually antagonistic genetic variation for fitness in red deer. Nature 447, 1107–1110 (2007)

    Article  CAS  ADS  Google Scholar 

  6. Wilson, A. J. et al. Environmental coupling of selection and heritability limits evolution. PLoS Biol. 4, e216 (2006)

    Article  CAS  Google Scholar 

  7. Kruuk, L. E. B. et al. Antler size in red deer: heritability and selection but no evolution. Evol. Int. J. Org. Evol. 56, 1683–1695 (2002)

    Article  CAS  Google Scholar 

  8. Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwin's finches. Science 296, 707–711 (2002)

    Article  CAS  ADS  Google Scholar 

  9. Garant, D., Kruuk, L. E. B., McCleery, R. H. & Sheldon, B. C. Evolution in a changing environment: a case study with great tit fledging mass. Am. Nat. 164, 115–129 (2004)

    Article  Google Scholar 

  10. Knapczyk, F. N. & Conner, J. K. Estimates of the average strength of selection are not inflated by sampling error or publication bias. Am. Nat. 170, 501–508 (2007)

    Article  Google Scholar 

  11. Kruuk, L. E. B. Estimating genetic parameters in natural populations using the “animal model”. Phil. Trans. R. Soc. Lond. B 359, 873–890 (2004)

    Article  Google Scholar 

  12. Kruuk, L. E. B. et al. Heritability of fitness in a wild mammal population. Proc. Natl Acad. Sci. USA 97, 698–703 (2000)

    Article  CAS  ADS  Google Scholar 

  13. Pelletier, F., Clutton-Brock, T. H., Pemberton, J. M., Tuljapurkar, S. & Coulson, T. The evolutionary demography of ecological change: linking trait variation and population growth. Science 315, 1571–1574 (2007)

    Article  CAS  ADS  Google Scholar 

  14. Charmantier, A., Perrins, C., McCleery, R. H. & Sheldon, B. C. Quantitative genetics of age at reproduction in wild swans: support for antagonistic pleiotropy models of senescence. Proc. Natl Acad. Sci. USA 103, 6587–6592 (2006)

    Article  CAS  ADS  Google Scholar 

  15. Conover, D. O. & Schultz, E. T. Phenotypic similarity and the evolutionary significance of counter-gradient variation. Trends Ecol. Evol. 10, 248–252 (1995)

    Article  CAS  Google Scholar 

  16. Laugen, A. T. et al. Latitudinal countergradient variation in the common frog (Rana temporaria) development rates—evidence for local adaptation. J. Evol. Biol. 16, 996–1005 (2003)

    Article  CAS  Google Scholar 

  17. Merila, J., Kruuk, L. E. B. & Sheldon, B. C. Cryptic evolution in a wild bird population. Nature 412, 76–79 (2001)

    Article  CAS  ADS  Google Scholar 

  18. Garant, D., Kruuk, L. E. B., Wilkin, T. A., McCleery, R. H. & Sheldon, B. C. Evolution driven by differential dispersal within a wild bird population. Nature 433, 60–65 (2005)

    Article  CAS  ADS  Google Scholar 

  19. Wilson, A. J. et al. Quantitative genetics of growth and cryptic evolution of body size in an island population. Evol. Ecol. 21, 337–356 (2007)

    Article  Google Scholar 

  20. Hoekstra, H. E. & Coyne, J. A. The locus of evolution: evo devo and the genetics of adaptation. Evol. Int. J. Org. Evol. 61, 995–1016 (2007)

    Article  Google Scholar 

  21. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975)

    Article  CAS  ADS  Google Scholar 

  22. Carroll, S. B. Endless Forms Most Beautiful: the New Science of Evo-Devo (W. W. Norton & Co., New York, 2005)

    Google Scholar 

  23. Prud'homme, B. et al. Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 440, 1050–1053 (2006)

    Article  CAS  ADS  Google Scholar 

  24. Borneman, A. R. et al. Divergence of transcription factor binding sites across related yeast species. Science 317, 815–819 (2007)

    Article  CAS  ADS  Google Scholar 

  25. McGregor, A. P. et al. Morphological evolution through multiple cis-regulatory mutations at a single gene. Nature 448, 587–590 (2007)

    Article  CAS  ADS  Google Scholar 

  26. ffrench-Constant, R. H., Rocheleau, T. A., Steichen, J. C. & Chalmers, A. E. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature 363, 448–451 (1993)

    Article  ADS  Google Scholar 

  27. Bustamante, C. D. et al. Natural selection on protein-coding genes in the human genome. Nature 437, 1153–1157 (2005)

    Article  CAS  ADS  Google Scholar 

  28. Vera, J. C. et al. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing. Mol. Ecol. advance online publication, doi: 10.1111/j.1365-294x.2008.03666.x (5 February 2008)

  29. Mitchell-Olds, T., Willis, J. H. & Goldstein, D. B. Which evolutionary processes influence natural genetic variation for phenotypic traits? Nature Rev. Genet. 8, 845–856 (2007)

    Article  CAS  Google Scholar 

  30. Williams, J. T. & Blangero, J. Power of variance component linkage analysis to detect quantitative trait loci. Ann. Hum. Genet. 63, 545–563 (1999)

    Article  CAS  Google Scholar 

  31. Barton, N. H. & Keightly, P. D. Understanding quantitative genetic variation. Nature Rev. Genet. 3, 11–21 (2002)

    Article  CAS  Google Scholar 

  32. Lynch, M. & Walsh, B. Genetics and Analysis of Quantitative Traits (Sinauer Associates, Sunderland, Massachusetts, 1998)

    Google Scholar 

  33. Slate, J. et al. A genome scan for quantitative trait loci in a wild populations of red deer (Cervus elaphus). Genetics 162, 1863–1873 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Beraldi, D. et al. Mapping quantitative trait loci underlying fitness-related traits in a free-living sheep population. Evol. Int. J. Org. Evol. 61, 1403–1416 (2007)

    Article  Google Scholar 

  35. Colosimo, P. F. et al. The genetic architecture of parallel armor plate reduction in threespine sticklebacks. PLoS Biol. 2, e109 (2004)

    Article  Google Scholar 

  36. Colosimo, P. F. et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science 307, 1928–1933 (2005)

    Article  CAS  ADS  Google Scholar 

  37. Backström, N., Qvarnstrom, A., Gustafsson, L. & Ellegren, H. Levels of linkage disequilibrium in a wild bird population. Biol. Lett. 2, 435–438 (2006)

    Article  Google Scholar 

  38. Slate, J. & Pemberton, J. M. Admixture and patterns of linkage disequilibrium in a free-living vertebrate population. J. Evol. Biol. 20, 1415–1427 (2007)

    Article  CAS  Google Scholar 

  39. Yu, J. et al. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genet. 38, 203–208 (2006)

    Article  CAS  Google Scholar 

  40. Williamson, S. et al. Localizing recent adaptive evolution in the human genome. PloS Genet. 3, e90 (2007)

    Article  Google Scholar 

  41. Pennings, P. S. & Hermisson, J. Soft sweeps. III: The signature of positive selection from recurrent mutation. PloS Genet. 2, e186 (2006)

    Article  Google Scholar 

  42. Teshima, K. M., Coop, G. & Preworski, M. How reliable are empirical genomic scans for selective sweeps? Genome Res. 16, 702–712 (2006)

    Article  CAS  Google Scholar 

  43. Beaumont, M. A. Adaptation and speciation: what can F ST tell us? Trends Ecol. Evol. 20, 435–440 (2005)

    Article  Google Scholar 

  44. Storz, J. F. Using genome scans of DNA polymorphism to infer adaptive population divergence. Mol. Ecol. 14, 671–688 (2005)

    Article  CAS  Google Scholar 

  45. Luikart, G., England, P. R., Tallman, D., Jordan, S. & Taberlet, P. The power and promise of population genomics: from genotyping to genome typing. Nature Rev. Genet. 4, 981–993 (2003)

    Article  CAS  Google Scholar 

  46. Campbell, D. & Bernatchez, L. Generic scan using AFLP markers as a means to assess the role of directional selection in the divergence of sympatric whitefish ecotypes. Mol. Biol. Evol. 21, 945–956 (2004)

    Article  CAS  Google Scholar 

  47. Bonin, A. Explorative genome scan to detect candidate loci for adaptation along a gradient of altitude in the common frog (Rana temporaria). Mol. Ecol. 23, 773–783 (2006)

    CAS  Google Scholar 

  48. Rogers, S. M. & Bernatchez, L. Integrating QTL mapping and genome scans towards the characterization of candidate loci under parallel selection in the lake whitefish (Coregonus clupeaformis). Mol. Ecol. 14, 351–361 (2005)

    Article  CAS  Google Scholar 

  49. Lin, J. Y. & Fisher, D. E. Melanocyte biology and skin pigmentation. Nature 445, 843–850 (2007)

    Article  CAS  ADS  Google Scholar 

  50. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A. & Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science 313, 101–104 (2006)

    Article  CAS  ADS  Google Scholar 

  51. Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. W. Adaptive reptile color variation and the evolution of the MC1R gene. Evolution Int. J. Org. Evolution 58, 1794–1808 (2004)

    CAS  Google Scholar 

  52. Mundy, N. I. et al. Conserved genetics basis of a quantitative plumage trait involved in mate choice. Science 303, 1870–1873 (2004)

    Article  CAS  ADS  Google Scholar 

  53. Steiner, C. C., Weber, J. N. & Hoekstra, H. E. Adaptive variation in beach mice produced by two interacting pigmentation genes. PLoS Biol. 5, e239 (2007)

    Article  Google Scholar 

  54. Miller, C. T. et al. cis-regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell 131, 1179–1189 (2007)

    Article  CAS  Google Scholar 

  55. Protas, M. E. et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genet. 38, 107–111 (2006)

    Article  CAS  Google Scholar 

  56. Dahlhoff, E. P. & Rank, N. E. Functional and physiological consequences of genetic variation at phosphoglucose isomerase: Heat shock protein expression is related to enzyme genotype in a montane beetle. Proc. Natl Acad. Sci. USA 97, 10056–10061 (2000)

    Article  CAS  ADS  Google Scholar 

  57. Haag, C. R., Saastamoinen, M., Marden, J. H. & Hanski, I. A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc. Biol. Sci. 272, 2449–2456 (2005)

    Article  Google Scholar 

  58. Whitehead, A. & Crawford, D. L. Variation within and among species in gene expression: raw material for evolution. Mol. Ecol. 15, 1197–1211 (2006)

    Article  CAS  Google Scholar 

  59. Derome, N. & Bernatchez, L. The transcriptomics of ecological convergence between two limnetic coregonine fishes (Salmonidae). Mol. Biol. Evol. 23, 2370–2378 (2006)

    Article  CAS  Google Scholar 

  60. Gilad, Y., Oshlack, A. & Rifkin, S. A. Natural selection on gene expression. Trends Genet. 22, 456–461 (2006)

    Article  CAS  Google Scholar 

  61. Gibson, G. & Weir, B. The quantitative genetics of transcription. Trends Genet. 21, 616–623 (2005)

    Article  CAS  Google Scholar 

  62. Ellegren, H. & Parsch, J. The evolution of sex-biased genes and sex-biased gene expression. Nature Rev. Genet. 8, 689–698 (2007)

    Article  CAS  Google Scholar 

  63. Nussey, D. H., Postma, E., Gienapp, P. & Visser, M. E. Selection on heritable phenotypic plasticity in a wild bird population. Science 310, 304–306 (2005)

    Article  CAS  ADS  Google Scholar 

  64. Charmantier, A. & Sheldon, B. C. Testing genetic models of mate choice evolution in the wild. Trends Ecol. Evol. 21, 417–419 (2006)

    Article  Google Scholar 

  65. Frank, S. A. George Price's contributions to evolutionary genetics. J. Theor. Biol. 175, 373–388 (1995)

    Article  CAS  Google Scholar 

  66. Lande, R. A quantitative genetic theory of life history evolution. Ecology 63, 607–615 (1982)

    Article  Google Scholar 

  67. Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution Int. J. Org. Evolution 37, 1210–1226 (1983)

    Article  Google Scholar 

  68. Metcalf, C. J. E. & Pavard, S. Why evolutionary biologists should be demographers. Trends Ecol. Evol. 22, 205–212 (2007)

    Article  Google Scholar 

  69. Coulson, T. et al. Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc. R. Soc. Lond. Ser. B 273, 547–555 (2006)

    Article  CAS  Google Scholar 

  70. Fisher, R. A. The Genetical Theory of Natural Selection (Clarendon Press, Oxford, 1930)

    Book  Google Scholar 

  71. Price, G. R. Fisher's ‘fundamental theorem’ made clear. Ann. Hum. Genet. 36, 129–140 (1972)

    Article  CAS  MathSciNet  Google Scholar 

  72. Schneider, R. A. & Helms, J. A. The cellular and molecular origins of beak morphology. Science 299, 565–568 (2003)

    Article  CAS  ADS  Google Scholar 

  73. Abzhanov, A. et al. Bmp4 and morphological variation of beaks in Darwin's finches. Science 305, 1462–1465 (2004)

    Article  CAS  ADS  Google Scholar 

  74. Abzhanov, A. et al. The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches. Nature 442, 563–567 (2006)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Swedish Research Council (H.E.) and by a Royal Society University Research Fellowship and an Erskine Fellowship (B.C.S).

Author Contributions H.E. and B.C.S. wrote the paper together.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Ellegren or Ben C. Sheldon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ellegren, H., Sheldon, B. Genetic basis of fitness differences in natural populations. Nature 452, 169–175 (2008). https://doi.org/10.1038/nature06737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06737

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing