Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Translating molecular discoveries into new therapies for atherosclerosis

Abstract

Atherosclerosis is characterized by the thickening of the arterial wall and is the primary cause of coronary artery disease and cerebrovascular disease, two of the most common causes of illness and death worldwide. Clinical trials have confirmed that certain lipoproteins and the renin–angiotensin–aldosterone system are important in the pathogenesis of atherosclerotic cardiovascular disease, and that interventions targeted towards these are beneficial. Furthermore, efforts to understand how risk factors such as high blood pressure, dysregulated blood lipids and diabetes contribute to atherosclerotic disease, as well as to understand the molecular pathogenesis of atherosclerotic plaques, are leading to new targets for therapy.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Initiation and progression of atherosclerosis.
Figure 2: Lipoprotein metabolism.
Figure 3: Recruitment of monocytes and formation of foam cells.

Similar content being viewed by others

References

  1. Stary, H. C. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler. Thromb. Vasc. Biol. 20, 1177–1178 (2000).

    CAS  PubMed  Google Scholar 

  2. Lusis, A. J. Atherosclerosis. Nature 407, 233–241 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Mani, A. et al. LRP6 mutation in a family with early coronary disease and metabolic risk factors. Science 315, 1278–1282 (2007). This study is a superb example of linkage analysis in a large kindred identifying a novel gene, LRP6 , associated with both premature coronary artery disease and components of the metabolic syndrome.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Morgan, T. M., Krumholz, H. M., Lifton, R. P. & Spertus, J. A. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. J. Am. Med. Assoc. 297, 1551–1561 (2007).

    CAS  Google Scholar 

  5. Zadelaar, S. et al. Mouse models for atherosclerosis and pharmaceutical modifiers. Arterioscler. Thromb. Vasc. Biol. 27, 1706–1721 (2007).

    CAS  PubMed  Google Scholar 

  6. Garcia, C. K. et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein. Science 292, 1394–1398 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Abifadel, M. et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nature Genet. 34, 154–156 (2003). This linkage study was the first to make the connection between PCSK9 and LDL-cholesterol metabolism; in retrospect, the mutations described are gain-of-function mutations leading to autosomal dominant hypercholesterolaemia.

    CAS  PubMed  Google Scholar 

  8. Maxwell, K. N., Soccio, R. E., Duncan, E. M., Sehayek, E. & Breslow, J. L. Novel putative SREBP and LXR target genes identified by microarray analysis in liver of cholesterol-fed mice. J. Lipid Res. 44, 2109–2119 (2003).

    CAS  PubMed  Google Scholar 

  9. Benjannet, S. et al. NARC-1/PCSK9 and its natural mutants: zymogen cleavage and effects on the low density lipoprotein (LDL) receptor and LDL cholesterol. J. Biol. Chem. 279, 48865–48875 (2004).

    CAS  PubMed  Google Scholar 

  10. Rashid, S. et al. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc. Natl Acad. Sci. USA 102, 5374–5379 (2005).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cohen, J. et al. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nature Genet. 37, 161–165 (2005).

    CAS  PubMed  Google Scholar 

  12. Cohen, J. C., Boerwinkle, E., Mosley, T. H. Jr & Hobbs, H. H. Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N. Engl. J. Med. 354, 1264–1272 (2006). This paper describes a definitive genetic epidemiology study demonstrating that heterozygosity for loss-of-function mutations in PCSK9 is associated not only with low LDL-cholesterol concentrations but with substantial protection against coronary heart disease.

    CAS  PubMed  Google Scholar 

  13. Horton, J. D., Cohen, J. C. & Hobbs, H. H. Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem. Sci. 32, 71–77 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Pajukanta, P. et al. Familial combined hyperlipidemia is associated with upstream transcription factor 1 (USF1). Nature Genet. 36, 371–376 (2004).

    CAS  PubMed  Google Scholar 

  15. Kastelein, J. J. et al. Potent reduction of apolipoprotein B and low-density lipoprotein cholesterol by short-term administration of an antisense inhibitor of apolipoprotein B. Circulation 114, 1729–1735 (2006).

    CAS  PubMed  Google Scholar 

  16. Cuchel, M. et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med. 356, 148–156 (2007).

    CAS  PubMed  Google Scholar 

  17. Rader, D. J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest. 116, 3090–3100 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nissen, S. E. et al. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. J. Am. Med. Assoc. 290, 2292–2300 (2003).

    CAS  Google Scholar 

  19. Tardif, J. C. et al. Effects of reconstituted high-density lipoprotein infusions on coronary atherosclerosis: a randomized controlled trial. J. Am. Med. Assoc. 297, 1675–1682 (2007).

    Google Scholar 

  20. Brousseau, M. E. et al. Effects of an inhibitor of cholesteryl ester transfer protein on HDL cholesterol. N. Engl. J. Med. 350, 1505–1515 (2004).

    CAS  PubMed  Google Scholar 

  21. Barter, P. J. et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 357, 2109–2122 (2007). This paper reports the outcome of the clinical trial of the CETP inhibitor torcetrapib, a trial that was prematurely terminated because of a higher death rate (from both non-cardiovascular and cardiovascular causes) and a larger number of cardiovascular events in the torcetrapib-treated group. This study raises important questions about CETP inhibition as a therapeutic strategy, as well as doubts about targeting HDLs in general.

    CAS  PubMed  Google Scholar 

  22. Rader, D. J. Illuminating HDL — is it still a viable therapeutic target? N. Engl. J. Med. 357, 2180–2183 (2007).

    CAS  PubMed  Google Scholar 

  23. Hobbs, H. H. & Rader, D. J. ABC1: connecting yellow tonsils, neuropathy, and very low HDL. J. Clin. Invest. 104, 1015–1017 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, N., Lan, D., Chen, W., Matsuura, F. & Tall, A. R. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins. Proc. Natl Acad. Sci. USA 101, 9774–9779 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang, X. et al. Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J. Clin. Invest. 117, 2216–2224 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Joseph, S. B. et al. Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99, 7604–7609 (2002).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naik, S. U. et al. Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113, 90–97 (2006).

    CAS  PubMed  Google Scholar 

  28. Levin, N. et al. Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol. 25, 135–142 (2005).

    CAS  PubMed  Google Scholar 

  29. Mineo, C., Deguchi, H., Griffin, J. H. & Shaul, P. W. Endothelial and antithrombotic actions of HDL. Circ. Res. 98, 1352–1364 (2006).

    CAS  PubMed  Google Scholar 

  30. Barter, P. J. et al. Antiinflammatory properties of HDL. Circ. Res. 95, 764–772 (2004).

    CAS  PubMed  Google Scholar 

  31. Levine, D. M., Parker, T. S., Donnelly, T. M., Walsh, A. & Rubin, A. L. In vivo protection against endotoxin by plama high density lipoprotein. Proc. Natl Acad. Sci. USA 90, 12040–12044 (1993).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiflett, A. M., Bishop, J. R., Pahwa, A. & Hajduk, S. L. Human high density lipoproteins are platforms for the assembly of multi-component innate immune complexes. J. Biol. Chem. 280, 32578–32585 (2005).

    CAS  PubMed  Google Scholar 

  33. Vaisar, T. et al. Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL. J. Clin. Invest. 117, 746–756 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Navab, M., Anantharamaiah, G. M., Reddy, S. T. & Fogelman, A. M. Apolipoprotein A-I mimetic peptides and their role in atherosclerosis prevention. Nature Clin. Pract. Cardiovasc. Med. 3, 540–547 (2006).

    CAS  Google Scholar 

  35. Grosser, T., Fries, S. & FitzGerald, G. A. Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J. Clin. Invest. 116, 4–15 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kobayashi, T. et al. Roles of thromboxane A2 and prostacyclin in the development of atherosclerosis in apoE-deficient mice. J. Clin. Invest. 114, 784–794 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Egan, K. M. et al. COX-2-derived prostacyclin confers atheroprotection on female mice. Science 306, 1954–1957 (2004). This paper shows the atheroprotective effects of PGI 2 and activation of its receptor, with the interesting twist that the effect is limited to female mice (as a result of oestrogen-receptor-α -stimulated production of PGI 2 ). The study has implications for the cardiovascular complications of COX2 inhibition and for therapies targeted to prostaglandin biology.

    ADS  CAS  PubMed  Google Scholar 

  38. Wang, M. et al. Deletion of microsomal prostaglandin E synthase-1 augments prostacyclin and retards atherogenesis. Proc. Natl Acad. Sci. USA 103, 14507–14512 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng, K. et al. Antagonism of the prostaglandin D2 receptor 1 suppresses nicotinic acid-induced vasodilation in mice and humans. Proc. Natl Acad. Sci. USA 103, 6682–6687 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Funk, C. D. Leukotriene modifiers as potential therapeutics for cardiovascular disease. Nature Rev. Drug Discov. 4, 664–672 (2005).

    CAS  Google Scholar 

  41. Qiu, H. et al. Expression of 5-lipoxygenase and leukotriene A4 hydrolase in human atherosclerotic lesions correlates with symptoms of plaque instability. Proc. Natl Acad. Sci. USA 103, 8161–8166 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dwyer, J. H. et al. Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis. N. Engl. J. Med. 350, 29–37 (2004).

    CAS  PubMed  Google Scholar 

  43. Helgadottir, A. et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nature Genet. 36, 233–239 (2004).

    CAS  PubMed  Google Scholar 

  44. Helgadottir, A. et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nature Genet. 38, 68–74 (2006).

    CAS  PubMed  Google Scholar 

  45. Mehrabian, M. et al. Identification of 5-lipoxygenase as a major gene contributing to atherosclerosis susceptibility in mice. Circ. Res. 91, 120–126 (2002).

    CAS  PubMed  Google Scholar 

  46. Zhao, L. et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nature Med. 10, 966–973 (2004).

    CAS  PubMed  Google Scholar 

  47. Hakonarson, H. et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. J. Am. Med. Assoc. 293, 2245–2256 (2005).

    CAS  Google Scholar 

  48. Navab, M. et al. The oxidation hypothesis of atherogenesis: the role of oxidized phospholipids and HDL. J. Lipid Res. 45, 993–1007 (2004).

    CAS  PubMed  Google Scholar 

  49. Nicholls, S. J. & Hazen, S. L. Myeloperoxidase and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 25, 1102–1111 (2005).

    CAS  PubMed  Google Scholar 

  50. Wang, Z. et al. Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nature Med. 13, 1176–1184 (2007).

    CAS  PubMed  Google Scholar 

  51. Webb, N. R. Secretory phospholipase A2 enzymes in atherogenesis. Curr. Opin. Lipidol. 16, 341–344 (2005).

    CAS  PubMed  Google Scholar 

  52. Macphee, C. H., Nelson, J. & Zalewski, A. Role of lipoprotein-associated phospholipase A2 in atherosclerosis and its potential as a therapeutic target. Curr. Opin. Pharmacol. 6, 154–161 (2006).

    CAS  PubMed  Google Scholar 

  53. Binder, C. J. et al. Pneumococcal vaccination decreases atherosclerotic lesion formation: molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nature Med. 9, 736–743 (2003).

    CAS  PubMed  Google Scholar 

  54. Binder, C. J. et al. IL-5 links adaptive and natural immunity specific for epitopes of oxidized LDL and protects from atherosclerosis. J. Clin. Invest. 114, 427–437 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Tsimikas, S. et al. Oxidized phospholipids, Lp(a) lipoprotein, and coronary artery disease. N. Engl. J. Med. 353, 46–57 (2005). This paper was the first to describe an association between circulating oxidized phospholipids and coronary artery disease, and it included the remarkable additional observation of a strong correlation between the concentration of oxidized phospholipids and lipoprotein ( a).

    CAS  PubMed  Google Scholar 

  56. Daugherty, A., Manning, M. W. & Cassis, L. A. Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J. Clin. Invest. 105, 1605–1612 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Weiss, D., Kools, J. J. & Taylor, W. R. Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation 103, 448–454 (2001).

    CAS  PubMed  Google Scholar 

  58. Lu, H., Cassis, L. A. & Daugherty, A. Atherosclerosis and arterial blood pressure in mice. Curr. Drug Targets 8, 1181–1189 (2007).

    CAS  PubMed  Google Scholar 

  59. Yusuf, S. et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. N. Engl. J. Med. 342, 145–153 (2000). This trial was the first to show that ACE inhibition is cardioprotective even in individuals who do not have high blood pressure; this finding is consistent with mechanistic studies in experimental animals and humans that indicate that the renin–angiotensin–aldosterone system can have direct proatherogenic effects. This trial led to the increased use of ACE inhibition in patients at high risk of cardiovascular events who do not have high blood pressure.

    CAS  PubMed  Google Scholar 

  60. Ley, K., Laudanna, C., Cybulsky, M. I. & Nourshargh, S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Rev. Immunol. 7, 678–689 (2007).

    CAS  Google Scholar 

  61. Cybulsky, M. I. et al. A major role for VCAM-1, but not ICAM-1, in early atherosclerosis. J. Clin. Invest. 107, 1255–1262 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Cuff, C. A. et al. The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation. J. Clin. Invest. 108, 1031–1040 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Davies, P. F. Endothelial mechanisms of flow-mediated athero-protection and susceptibility. Circ. Res. 101, 10–12 (2007).

    ADS  CAS  PubMed  Google Scholar 

  64. Parmar, K. M. et al. Integration of flow-dependent endothelial phenotypes by Kruppel-like factor 2. J. Clin. Invest. 116, 49–58 (2006).

    CAS  PubMed  Google Scholar 

  65. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Gordon, S. Macrophage heterogeneity and tissue lipids. J. Clin. Invest. 117, 89–93 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Martinez, F. O., Sica, A., Mantovani, A. & Locati, M. Macrophage activation and polarization. Front. Biosci. 13, 453–461 (2008).

    CAS  PubMed  Google Scholar 

  69. Michelsen, K. S. et al. Lack of Toll-like receptor 4 or myeloid differentiation factor 88 reduces atherosclerosis and alters plaque phenotype in mice deficient in apolipoprotein E. Proc. Natl Acad. Sci. USA 101, 10679–10684 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mullick, A. E., Tobias, P. S. & Curtiss, L. K. Modulation of atherosclerosis in mice by Toll-like receptor 2. J. Clin. Invest. 115, 3149–3156 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bjorkbacka, H. et al. Reduced atherosclerosis in MyD88-null mice links elevated serum cholesterol levels to activation of innate immunity signaling pathways. Nature Med. 10, 416–421 (2004).

    PubMed  Google Scholar 

  72. Michelsen, K. S. & Arditi, M. Toll-like receptor signaling and atherosclerosis. Curr. Opin. Hematol. 13, 163–168 (2006).

    CAS  PubMed  Google Scholar 

  73. Frantz, S., Ertl, G. & Bauersachs, J. Mechanisms of disease: Toll-like receptors in cardiovascular disease. Nature Clin. Pract. Cardiovasc. Med. 4, 444–454 (2007).

    CAS  Google Scholar 

  74. Vanderlaan, P. A. & Reardon, C. A. The unusual suspects: an overview of the minor leukocyte populations in atherosclerosis. J. Lipid Res. 46, 829–838 (2005).

    CAS  PubMed  Google Scholar 

  75. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  Google Scholar 

  76. Kovanen, P. T. Mast cells: multipotent local effector cells in atherothrombosis. Immunol. Rev. 217, 105–122 (2007).

    CAS  PubMed  Google Scholar 

  77. Davi, G. & Patrono, C. Platelet activation and atherothrombosis. N. Engl. J. Med. 357, 2482–2494 (2007).

    CAS  PubMed  Google Scholar 

  78. Llodra, J. et al. Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc. Natl Acad. Sci. USA 101, 11779–11784 (2004).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Trogan, E. et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc. Natl Acad. Sci. USA 103, 3781–3786 (2006). This study explored the molecular physiology of plaque regression, and it indicates that activation of CCR7 promotes egress of dendritic cells from plaques, thereby inducing plaque regression.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dimmeler, S. & Zeiher, A. M. Vascular repair by circulating endothelial progenitor cells: the missing link in atherosclerosis? J. Mol. Med. 82, 671–677 (2004).

    PubMed  Google Scholar 

  81. Sata, M. et al. Hematopoietic stem cells differentiate into vascular cells that participate in the pathogenesis of atherosclerosis. Nature Med. 8, 403–409 (2002).

    CAS  PubMed  Google Scholar 

  82. Bentzon, J. F. et al. Smooth muscle cells in atherosclerosis originate from the local vessel wall and not circulating progenitor cells in ApoE knockout mice. Arterioscler. Thromb. Vasc. Biol. 26, 2696–2702 (2006).

    CAS  PubMed  Google Scholar 

  83. Virmani, R., Kolodgie, F. D., Burke, A. P., Farb, A. & Schwartz, S. M. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 20, 1262–1275 (2000).

    CAS  PubMed  Google Scholar 

  84. Schwartz, S. M., Galis, Z. S., Rosenfeld, M. E. & Falk, E. Plaque rupture in humans and mice. Arterioscler. Thromb. Vasc. Biol. 27, 705–713 (2007).

    CAS  PubMed  Google Scholar 

  85. Jackson, C. L. Defining and defending murine models of plaque rupture. Arterioscler. Thromb. Vasc. Biol. 27, 973–977 (2007).

    CAS  PubMed  Google Scholar 

  86. Braun, A. et al. Loss of SR-BI expression leads to the early onset of occlusive atherosclerotic coronary artery disease, spontaneous myocardial infarctions, severe cardiac dysfunction, and premature death in apolipoprotein E-deficient mice. Circ. Res. 90, 270–276 (2002).

    CAS  PubMed  Google Scholar 

  87. Newby, A. C. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol. Rev. 85, 1–31 (2005).

    CAS  PubMed  Google Scholar 

  88. Gough, P. J., Gomez, I. G., Wille, P. T. & Raines, E. W. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J. Clin. Invest. 116, 59–69 (2006).

    CAS  PubMed  Google Scholar 

  89. Liu, J. et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 24, 1359–1366 (2004).

    CAS  PubMed  Google Scholar 

  90. Tabas, I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25, 2255–2264 (2005).

    CAS  PubMed  Google Scholar 

  91. Seimon, T. A., Obstfeld, A., Moore, K. J., Golenbock, D. T. & Tabas, I. Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc. Natl Acad. Sci. USA 103, 19794–19799 (2006).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Clarke, M. C. et al. Apoptosis of vascular smooth muscle cells induces features of plaque vulnerability in atherosclerosis. Nature Med. 12, 1075–1080 (2006).

    CAS  PubMed  Google Scholar 

  93. McPherson, R. et al. A common allele on chromosome 9 associated with coronary heart disease. Science 316, 1488–1491 (2007).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Helgadottir, A. et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316, 1491–1493 (2007).

    ADS  CAS  PubMed  Google Scholar 

  95. Samani, N. J. et al. Genomewide association analysis of coronary artery disease. N. Engl. J. Med. 357, 443–453 (2007). This is the first report of a complete genome-wide association study of coronary artery disease. The study identified several loci that are significantly associated with coronary artery disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Grainger, D. J. TGF-β and atherosclerosis in man. Cardiovasc. Res. 74, 213–222 (2007).

    CAS  PubMed  Google Scholar 

  97. Schober, A., Karshovska, E., Zernecke, A. & Weber, C. SDF-1α-mediated tissue repair by stem cells: a promising tool in cardiovascular medicine? Trends Cardiovasc. Med. 16, 103–108 (2006).

    CAS  PubMed  Google Scholar 

  98. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).

  99. Saxena, R. et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316, 1331–1336 (2007).

    CAS  PubMed  Google Scholar 

  100. Kathiresan, S. et al. Six new loci associated with blood low-density lipoprotein cholesterol, high density lipoprotein cholesterol, or triglycerides in humans. Nature Genet. advance online publication, doi:10.1038/ng.75 (13 January 2008). This paper describes one of the first genome-wide studies to search for loci associated with concentrations of the three main types of plasma lipid. The study shows that for some loci known to cause mendelian lipid disorders, there are also common genetic variants that affect plasma lipid concentrations, and it also identified several loci that are significantly associated with concentrations of each of the three main types of plasma lipid.

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

D.J.R. has had financial relationships with the following organizations in the past five years. He has received grant or research support from Abbott Laboratories, AstraZeneca, Boehringer Ingelheim, Bristol-Myers Squibb, Bruin Pharmaceuticals, Eli Lilly, GlaxoSmithKline, Kos Pharmaceuticals, Merck & Co., Pfizer, Schering-Plough and Takeda Pharmaceutical Company. He has been a consultant for Abbott, AstraZeneca, Bristol-Myers Squibb, Dr. Reddy’s Laboratories, GlaxoSmithKline, Johnson & Johnson, Kos Pharmaceuticals, Merck & Co., Merck/Schering Plough Pharmaceuticals, Novartis, Pfizer, Resverlogix, sanofi-aventis, Schering-Plough, Takeda Pharmaceutical Company and Wyeth. He has equity in Aegerion Pharmaceuticals.

Additional information

Correspondence should be addressed to D.J.R. (rader@mail.med.upenn.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rader, D., Daugherty, A. Translating molecular discoveries into new therapies for atherosclerosis. Nature 451, 904–913 (2008). https://doi.org/10.1038/nature06796

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06796

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing