Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

What we can do and what we cannot do with fMRI

Abstract

Functional magnetic resonance imaging (fMRI) is currently the mainstay of neuroimaging in cognitive neuroscience. Advances in scanner technology, image acquisition protocols, experimental design, and analysis methods promise to push forward fMRI from mere cartography to the true study of brain organization. However, fundamental questions concerning the interpretation of fMRI data abound, as the conclusions drawn often ignore the actual limitations of the methodology. Here I give an overview of the current state of fMRI, and draw on neuroimaging and physiological data to present the current understanding of the haemodynamic signals and the constraints they impose on neuroimaging data interpretation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Specificity of GE-EPI and SE-EPI.
Figure 2: Principles of excitation–inhibition circuits.
Figure 3: Neural and vascular contents of a voxel.

Similar content being viewed by others

References

  1. Wandell, B. A., Brewer, A. A. & Dougherty, R. F. Visual field map clusters in human cortex. Phil. Trans. R. Soc. Lond. B 360, 693–707 (2005)This paper provides a description of human visual field maps and the rationale generating and naming them.

    Article  Google Scholar 

  2. Haacke, E. M. et al. Magnetic Resonance Imaging: Principles and Sequence Design (John Wiley & Son, New York, 1999)

    Google Scholar 

  3. Wood, M. L. & Wehrli, F. W. Principles of magnetic resonance imaging. In Magnetic Resonance Imaging 3rd edn (eds Stark, D. D. & Bradley, W.) 1–14 (Mosby, St Louis/Baltimore/Boston/London/Tokyo, 1999)

    Google Scholar 

  4. Buxton, R. B. Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques (Cambridge Univ. Press, Cambridge, UK, 2002)

    Book  Google Scholar 

  5. Ogawa, S. & Lee, T. M. Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn. Reson. Med. 16, 9–18 (1990)

    Article  CAS  Google Scholar 

  6. Ogawa, S. et al. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn. Reson. Med. 14, 68–78 (1990)

    Article  CAS  Google Scholar 

  7. Motter, B. C. Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J. Neurophysiol. 70, 909–919 (1993)

    Article  CAS  Google Scholar 

  8. Luck, S. J., Chelazzi, L., Hillyard, S. A. & Desimone, R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J. Neurophysiol. 77, 24–42 (1997)

    Article  CAS  Google Scholar 

  9. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M. & Raichle, M. E. Positron emission tomographic studies of the processing of single words. J. Cogn. Neurosci. 1, 153–170 (1989)

    Article  CAS  Google Scholar 

  10. Friston, K. J. et al. The trouble with cognitive subtraction. Neuroimage 4, 97–104 (1996)

    Article  CAS  Google Scholar 

  11. Poeppel, D. A critical review of PET studies of phonological processing. Brain Lang. 55, 317–351 (1996)

    Article  CAS  Google Scholar 

  12. Buckner, R. L. et al. Detection of cortical activation during averaged single trials of a cognitive task using functional magnetic resonance imaging. Proc. Natl Acad. Sci. USA 93, 14878–14883 (1996)

    Article  ADS  CAS  Google Scholar 

  13. Krekelberg, B., Boynton, G. M. & van Wezel, R. J. Adaptation: from single cells to BOLD signals. Trends Neurosci. 29, 250–256 (2006). This paper discusses fMRI adaptation designs.

    Article  CAS  Google Scholar 

  14. Friston, K. J. et al. Analysis of fMRI time-series revisited. Neuroimage 2, 45–53 (1995)

    Article  CAS  Google Scholar 

  15. Haynes, J. D. & Rees, G. Decoding mental states from brain activity in humans. Nature Rev. Neurosci. 7, 523–534 (2006)

    Article  CAS  Google Scholar 

  16. Braitenberg, V. & Schuez, A. Cortex: Statistics and Geometry of Neuronal Connectivity 2nd edn (Springer, Berlin, 1998)

    Book  Google Scholar 

  17. Douglas, R. J. & Martin, K. A. Neuronal circuits of the neocortex. Annu. Rev. Neurosci. 27, 419–451 (2004)This paper provides a review of cortical microcircuits.

    Article  CAS  Google Scholar 

  18. Ullman, S. Sequence seeking and counter streams: A computational model for bidirectional information flow in the visual cortex. Cereb. Cortex 5, 1–11 (1995)

    Article  CAS  Google Scholar 

  19. Friston, K. A theory of cortical responses. Phil. Trans. R. Soc. B 360, 815–836 (2005)

    Article  Google Scholar 

  20. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991)

    Article  CAS  Google Scholar 

  21. Douglas, R. J. & Martin, K. A. Mapping the matrix: the ways of neocortex. Neuron 56, 226–238 (2007)

    Article  CAS  Google Scholar 

  22. Freund, T. F. Interneuron diversity series: Rhythm and mood in perisomatic inhibition. Trends Neurosci. 26, 489–495 (2003)

    Article  CAS  Google Scholar 

  23. Markram, H. et al. Interneurons of the neocortical inhibitory system. Nature Rev. Neurosci. 5, 793–807 (2004)This paper is a review on the various types of interneuron.

    Article  CAS  Google Scholar 

  24. DeFelipe, J. Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex. J. Chem. Neuroanat. 14, 1–19 (1997)

    Article  CAS  Google Scholar 

  25. Szabadics, J. et al. Excitatory effect of GABAergic axo-axonic cells in cortical microcircuits. Science 311, 233–235 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Douglas, R. J., Koch, C., Mahowald, M., Martin, K. A. & Suarez, H. H. Recurrent excitation in neocortical circuits. Science 269, 981–985 (1995)

    Article  ADS  CAS  Google Scholar 

  27. Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin. Neurobiol. 4, 569–579 (1994)

    Article  CAS  Google Scholar 

  28. Chance, F. S., Abbott, L. F. & Reyes, A. D. Gain modulation from background synaptic input. Neuron 35, 773–782 (2002)

    Article  CAS  Google Scholar 

  29. Brunel, N. & Wang, X. J. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J. Comput. Neurosci. 11, 63–85 (2001)

    Article  CAS  Google Scholar 

  30. Steriade, M., Timofeev, I. & Grenier, F. Natural waking and sleep states: a view from inside neocortical neurons. J. Neurophysiol. 85, 1969–1985 (2001)

    Article  CAS  Google Scholar 

  31. McCormick, D. A., Shu, Y. S. & Hasenstaub, A. Balanced recurrent excitation and inhibition in local cortical networks. in Excitatory-Inhibitory Balance: Synapses, Circuits, Systems (ed. Hensch, T.) (Kluver Academic Press, New York, 2003)

    Google Scholar 

  32. Haider, B., Duque, A., Hasenstaub, A. R. & McCormick, D. A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006). This paper provides a demonstration of the regulation of excitation–inhibition balance changes in vivo .

    Article  CAS  Google Scholar 

  33. Sherman, S. M. & Guillery, R. W. Exploring the Thalamus and its Role in Cortical Function 2nd edn (MIT Press, Cambridge, Massachusetts, 2006)

    Google Scholar 

  34. Crick, F. & Koch, C. Constraints on cortical and thalamic projections: the no-strong-loops hypothesis. Nature 391, 245–250 (1998)

    Article  ADS  CAS  Google Scholar 

  35. Jueptner, M. & Weiller, C. Review: does measurement of regional cerebral blood flow reflect synaptic activity? Implications for PET and fMRI. Neuroimage 2, 148–156 (1995)

    Article  CAS  Google Scholar 

  36. Sokoloff, L. et al. The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: Theory, procedure and normal values in the conscious and anesthetized albino rat. J. Neurochem. 28, 897–916 (1977)

    Article  CAS  Google Scholar 

  37. Nudo, R. J. & Masterton, R. B. Stimulation-induced [14C]2-deoxyglucose labeling of synaptic activity in the central auditory system. J. Comp. Neurol. 245, 553–565 (1986)

    Article  CAS  Google Scholar 

  38. Ackermann, R. F., Finch, D. M., Babb, T. L. & Engel, J. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J. Neurosci. 4, 251–264 (1984)

    Article  CAS  Google Scholar 

  39. Stefanovic, B., Warnking, J. M. & Pike, G. B. Hemodynamic and metabolic responses to neuronal inhibition. Neuroimage 22, 771–778 (2004)

    Article  Google Scholar 

  40. Shmuel, A. et al. Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron 36, 1195–1210 (2002)

    Article  CAS  Google Scholar 

  41. Shmuel, A., Augath, M., Oeltermann, A. & Logothetis, N. K. Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neurosci. 9, 569–577 (2006)

    Article  CAS  Google Scholar 

  42. Devor, A. et al. Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. J. Neurosci. 27, 4452–4459 (2007)

    Article  CAS  Google Scholar 

  43. Attwell, D. & Gibb, A. Neuroenergetics and the kinetic design of excitatory synapses. Nature Rev. Neurosci. 6, 841–849 (2005)

    Article  CAS  Google Scholar 

  44. Payne, J. A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003)

    Article  CAS  Google Scholar 

  45. McCormick, D. A., Connors, B. W., Lighthall, J. W. & Prince, D. A. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54, 782–806 (1985)

    Article  CAS  Google Scholar 

  46. Buzsaki, G., Geisler, C., Henze, D. A. & Wang, X. J. Interneuron diversity series: Circuit complexity and axon wiring economy of cortical interneurons. Trends Neurosci. 27, 186–193 (2004)

    Article  CAS  Google Scholar 

  47. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z. & Markram, H. Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cereb. Cortex 12, 395–410 (2002)

    Article  Google Scholar 

  48. Buzsaki, G., Kaila, K. & Raichle, M. Inhibition and brain work. Neuron 56, 771–783 (2007)

    Article  CAS  Google Scholar 

  49. Peppiatt, C. M. et al. Bidirectional control of CNS capillary diameter by pericytes. Nature 443, 700–704 (2006)

    Article  ADS  CAS  Google Scholar 

  50. Hamel, E. Perivascular nerves and the regulation of cerebrovascular tone. J. Appl. Physiol. 100, 1059–1064 (2006)

    Article  Google Scholar 

  51. Kayser, C. & Konig, P. Stimulus locking and feature selectivity prevail in complementary frequency ranges of V1 local field potentials. Eur. J. Neurosci. 19, 485–489 (2004)

    Article  Google Scholar 

  52. Liu, J. & Newsome, W. T. Local field potential in cortical area MT: Stimulus tuning and behavioral correlations. J. Neurosci. 26, 7779–7790 (2006)

    Article  CAS  Google Scholar 

  53. Wilke, M., Logothetis, N. K. & Leopold, D. A. Local field potential reflects perceptual suppression in monkey visual cortex. Proc. Natl Acad. Sci. USA 103, 17507–17512 (2006)

    Article  ADS  CAS  Google Scholar 

  54. Logothetis, N. K. et al. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001)

    Article  ADS  CAS  Google Scholar 

  55. Goense, J. B. M. & Logothetis, N. K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biol. 18, 631–640 (2008)

    Article  CAS  Google Scholar 

  56. Mathiesen, C., Caesar, K., Akgoren, N. & Lauritzen, M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J. Physiol. 512, 555–566 (1998)

    Article  CAS  Google Scholar 

  57. Viswanathan, A. & Freeman, R. D. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neurosci. 10, 1308–1312 (2007). This paper provides a demonstration of the coupling between CMRO 2 and the LFP.

    Article  CAS  Google Scholar 

  58. Rauch, A., Rainer, G. & Logothetis, N. K. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc. Natl Acad. Sci. USA 105, 6759–6764 (2008)

    Article  ADS  CAS  Google Scholar 

  59. Rockel, A. J., Hiorns, R. W. & Powell, T. P. The basic uniformity in structure of the neocortex. Brain 103, 221–244 (1980)

    Article  CAS  Google Scholar 

  60. Cragg, B. G. The density of synapses and neurones in the motor and visual areas of the cerebral cortex. J. Anat. 101, 639–654 (1967)

    CAS  Google Scholar 

  61. Schuz, A. & Demianenko, G. P. Constancy and variability in cortical structure. A study on synapses and dendritic spines in hedgehog and monkey. J. Hirnforsch. 36, 113–122 (1995)

    CAS  Google Scholar 

  62. Logothetis, N. K. & Wandell, B. A. Interpreting the BOLD signal. Annu. Rev. Physiol. 66, 735–769 (2004)

    Article  CAS  Google Scholar 

  63. Shoham, S., O’Connor, D. H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A 192, 777–784 (2006)

    Article  Google Scholar 

  64. Born, R. T. & Bradley, D. C. Structure and function of visual area MT. Annu. Rev. Neurosci. 28, 157–189 (2005)

    Article  CAS  Google Scholar 

  65. Zeki, S. Thirty years of a very special visual area, area V5. J. Physiol. 557, 1–2 (2004)

    Article  CAS  Google Scholar 

  66. Mather, G., Verstraten, F. A. & Anstis, S. M. The Motion Aftereffect: a Modern Perspective (MIT Press, Cambridge, Massachusetts, 1998)

    Google Scholar 

  67. Tootell, R. B. H. et al. Visual motion aftereffect in human cortical area MT revealed by functional magnetic-resonance-imaging. Nature 375, 139–141 (1995)

    Article  ADS  CAS  Google Scholar 

  68. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L. & Petersen, S. E. Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248, 1556–1559 (1990)

    Article  ADS  CAS  Google Scholar 

  69. Huk, A. C., Ress, D. & Heeger, D. J. Neuronal basis of the motion aftereffect reconsidered. Neuron 32, 161–172 (2001)

    Article  CAS  Google Scholar 

  70. Blake, R. & Logothetis, N. K. Visual competition. Nature Rev. Neurosci. 3, 13–21 (2002)

    Article  CAS  Google Scholar 

  71. Douglas, R. J., Martin, K. A. C. & Whitteridge, D. A canonical microcircuit for neocortex. Neural Comput. 1, 480–488 (1989)

    Article  Google Scholar 

  72. Bartels, A., Logothetis, N. K. & Moutoussis, K. FMRI and its interpretations: An illustration on directional sensitivity in area V5/MT. Trends Neurosci (in the press)

Download references

Acknowledgements

I thank my co-workers A. Bartels, J. Goense, M. Munk and A.-C. Zappe for discussions; my colleagues P. Hoffmann, C. Koch, K. Martin, A. Schüz, C. Kayser and R. Turner for their insightful comments and suggestions on the latest version of the article; J. Goense, B. Weber and A. L. Keller for providing graphics; and D. Blaurock for language corrections. The work is supported by the Max Planck Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos K. Logothetis.

Supplementary information

Supplementary information

The file contains Supplementary Notes with additional references. (PDF 692 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logothetis, N. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008). https://doi.org/10.1038/nature06976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature06976

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing