Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia

Abstract

Osteoclasts are multinucleated haematopoietic cells that resorb bone. Increased osteoclast activity causes osteoporosis, a disorder resulting in a low bone mass and a high risk of fractures1. Increased osteoclast size and numbers are also a hallmark of other disorders, such as Paget’s disease and multiple myeloma2. The protein c-Fos, a component of the AP-1 transcription factor complex, is essential for osteoclast differentiation3. Here we show that the Fos-related protein Fra-2 controls osteoclast survival and size. The bones of Fra-2-deficient newborn mice have giant osteoclasts, and signalling through leukaemia inhibitory factor (LIF) and its receptor is impaired. Similarly, newborn animals lacking LIF have giant osteoclasts, and we show that LIF is a direct transcriptional target of Fra-2 and c-Jun. Moreover, bones deficient in Fra-2 and LIF are hypoxic and express increased levels of hypoxia-induced factor 1α (HIF1α) and Bcl-2. Overexpression of Bcl-2 is sufficient to induce giant osteoclasts in vivo, whereas Fra-2 and LIF affect HIF1α through transcriptional modulation of the HIF prolyl hydroxylase PHD2. This pathway is operative in the placenta, because specific inactivation of Fra-2 in the embryo alone does not cause hypoxia or the giant osteoclast phenotype. Thus placenta-induced hypoxia during embryogenesis leads to the formation of giant osteoclasts in young pups. These findings offer potential targets for the treatment of syndromes associated with increased osteoclastogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Giant osteoclasts and decreased LIF/LIFR signalling in pups lacking Fra-2 ( Fosl2).
Figure 2: LIF inactivation or Bcl-2 overexpression leads to giant osteoclasts.
Figure 3: Hypoxia in Fra-2-deficient and LIF-deficient long bones.
Figure 4: A placental origin for the giant osteoclast defect.

Similar content being viewed by others

References

  1. Karsenty, G. & Wagner, E. F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2, 389–406 (2002)

    Article  CAS  Google Scholar 

  2. Ehrlich, L. A. & Roodman, G. D. The role of immune cells and inflammatory cytokines in Paget’s disease and multiple myeloma. Immunol. Rev. 208, 252–266 (2005)

    Article  CAS  Google Scholar 

  3. Grigoriadis, A. E. et al. c-Fos: a key regulator of osteoclast–macrophage lineage determination and bone remodeling. Science 266, 443–448 (1994)

    Article  ADS  CAS  Google Scholar 

  4. Karreth, F., Hoebertz, A., Scheuch, H., Eferl, R. & Wagner, E. F. The AP1 transcription factor Fra2 is required for efficient cartilage development. Development 131, 5717–5725 (2004)

    Article  CAS  Google Scholar 

  5. Eferl, R., Zenz, R., Theussl, H. C. & Wagner, E. F. Simultaneous generation of fra-2 conditional and fra-2 knock-out mice. Genesis 45, 447–451 (2007)

    Article  CAS  Google Scholar 

  6. Ware, C. B. et al. Targeted disruption of the low-affinity leukemia inhibitory factor receptor gene causes placental, skeletal, neural and metabolic defects and results in perinatal death. Development 121, 1283–1299 (1995)

    CAS  PubMed  Google Scholar 

  7. Sims, N. A. et al. Glycoprotein 130 regulates bone turnover and bone size by distinct downstream signaling pathways. J. Clin. Invest. 113, 379–389 (2004)

    Article  CAS  Google Scholar 

  8. Kawasaki, K. et al. Osteoclasts are present in gp130-deficient mice. Endocrinology 138, 4959–4965 (1997)

    Article  CAS  Google Scholar 

  9. Hsu, L. W. & Heath, J. K. Identification of two elements involved in regulating expression of the murine leukaemia inhibitory factor gene. Biochem. J. 302, 103–110 (1994)

    Article  CAS  Google Scholar 

  10. Martens, J. H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005)

    Article  CAS  Google Scholar 

  11. Bakiri, L., Matsuo, K., Wisniewska, M., Wagner, E. F. & Yaniv, M. Promoter specificity and biological activity of tethered AP-1 dimers. Mol. Cell. Biol. 22, 4952–4964 (2002)

    Article  CAS  Google Scholar 

  12. Escary, J. L., Perreau, J., Dumenil, D., Ezine, S. & Brulet, P. Leukaemia inhibitory factor is necessary for maintenance of haematopoietic stem cells and thymocyte stimulation. Nature 363, 361–364 (1993)

    Article  ADS  CAS  Google Scholar 

  13. Stewart, C. L. et al. Blastocyst implantation depends on maternal expression of leukaemia inhibitory factor. Nature 359, 76–79 (1992)

    Article  ADS  CAS  Google Scholar 

  14. Lagasse, E. & Weissman, I. L. Enforced expression of Bcl-2 in monocytes rescues macrophages and partially reverses osteopetrosis in op/op mice. Cell 89, 1021–1031 (1997)

    Article  CAS  Google Scholar 

  15. McGill, G. G. et al. Bcl2 regulation by the melanocyte master regulator Mitf modulates lineage survival and melanoma cell viability. Cell 109, 707–718 (2002)

    Article  CAS  Google Scholar 

  16. Egle, A., Harris, A. W., Bath, M. L., O’Reilly, L. & Cory, S. VavP-Bcl2 transgenic mice develop follicular lymphoma preceded by germinal center hyperplasia. Blood 103, 2276–2283 (2004)

    Article  CAS  Google Scholar 

  17. Sasabe, E., Tatemoto, Y., Li, D., Yamamoto, T. & Osaki, T. Mechanism of HIF-1α-dependent suppression of hypoxia-induced apoptosis in squamous cell carcinoma cells. Cancer Sci. 96, 394–402 (2005)

    Article  CAS  Google Scholar 

  18. Arnett, T. R. et al. Hypoxia is a major stimulator of osteoclast formation and bone resorption. J. Cell. Physiol. 196, 2–8 (2003)

    Article  CAS  Google Scholar 

  19. Schipani, E. et al. Hypoxia in cartilage: HIF-1α is essential for chondrocyte growth arrest and survival. Genes Dev. 15, 2865–2876 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Adamopoulos, I. E., Xia, Z., Lau, Y. S. & Athanasou, N. A. Hepatocyte growth factor can substitute for M-CSF to support osteoclastogenesis. Biochem. Biophys. Res. Commun. 350, 478–483 (2006)

    Article  CAS  Google Scholar 

  21. Utting, J. C. et al. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts. Exp. Cell Res. 312, 1693–1702 (2006)

    Article  CAS  Google Scholar 

  22. Berra, E., Ginouves, A. & Pouyssegur, J. The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signalling. EMBO Rep. 7, 41–45 (2006)

    Article  CAS  Google Scholar 

  23. Takeda, K. et al. Placental but not heart defects are associated with elevated hypoxia-inducible factor α levels in mice lacking prolyl hydroxylase domain protein 2. Mol. Cell. Biol. 26, 8336–8346 (2006)

    Article  CAS  Google Scholar 

  24. Schipani, E. Hypoxia and HIF-1α in chondrogenesis. Ann. NY Acad. Sci. 1068, 66–73 (2006)

    Article  ADS  CAS  Google Scholar 

  25. Jeong, C. H. et al. Hypoxia-inducible factor-1α inhibits self-renewal of mouse embryonic stem cells in vitro via negative regulation of the leukemia inhibitory factor–STAT3 pathway. J. Biol. Chem. 282, 13672–13679 (2007)

    Article  CAS  Google Scholar 

  26. Ivanov, S. V., Salnikow, K., Ivanova, A. V., Bai, L. & Lerman, M. I. Hypoxic repression of STAT1 and its downstream genes by a pVHL/HIF-1 target DEC1/STRA13. Oncogene 26, 802–812 (2007)

    Article  CAS  Google Scholar 

  27. Stephanou, A., Brar, B. K., Knight, R. A. & Latchman, D. S. Opposing actions of STAT-1 and STAT-3 on the Bcl-2 and Bcl-x promoters. Cell Death Differ. 7, 329–330 (2000)

    Article  CAS  Google Scholar 

  28. Dagoneau, N. et al. Null leukemia inhibitory factor receptor (LIFR) mutations in Stuve–Wiedemann/Schwartz–Jampel type 2 syndrome. Am. J. Hum. Genet. 74, 298–305 (2004)

    Article  CAS  Google Scholar 

  29. Brandwood, C. P. et al. Apoptatic gene expression in Paget's disease: a possible role for Bcl-2. J. Pathol. 201, 504–512 (2003)

    Article  CAS  Google Scholar 

  30. Clausen, B. E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999)

    Article  CAS  Google Scholar 

  31. Tallquist, M. D. & Soriano, P. Epiblast-restricted Cre expression in MORE mice: a tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26, 113–115 (2000)

    Article  CAS  Google Scholar 

  32. Parfitt, A. M. et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 2, 595–610 (1987)

    Article  CAS  Google Scholar 

  33. Filgueira, L. Fluorescence-based staining for tartrate-resistant acidic phosphatase (TRAP) in osteoclasts combined with other fluorescent dyes and protocols. J. Histochem. Cytochem. 52, 411–414 (2004)

    Article  CAS  Google Scholar 

  34. Bakiri, L. et al. Role of heterodimerization of c-Fos and Fra1 proteins in osteoclast differentiation. Bone 40, 867–875 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. Schipani for providing protocols and reagents for hypoxia stainings; A. Schleiffer and A. Souabni for experimental advice; and A. Grigoriadis, C. Hartmann, T. Jenuwein, R. Johnson and M. Sibilia for numerous suggestions and critical reading of the manuscript. The Institute of Molecular Pathology is funded by Boehringer Ingelheim and this work was supported by the Austrian Industrial Research Promotion Fund. L.B. is partly funded by the NoE Cells into Organs (LSHM-CT-2003-504468). A.H. was the recipient of an EMBO and Marie Curie long-term fellowship. M.A. is funded by the German Research Community (DFG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin F. Wagner.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-6 with Legends, Supplementary Methods and additional references. (PDF 3633 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bozec, A., Bakiri, L., Hoebertz, A. et al. Osteoclast size is controlled by Fra-2 through LIF/LIF-receptor signalling and hypoxia. Nature 454, 221–225 (2008). https://doi.org/10.1038/nature07019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07019

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing