Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Widespread changes in protein synthesis induced by microRNAs

Abstract

Animal microRNAs (miRNAs) regulate gene expression by inhibiting translation and/or by inducing degradation of target messenger RNAs. It is unknown how much translational control is exerted by miRNAs on a genome-wide scale. We used a new proteomic approach to measure changes in synthesis of several thousand proteins in response to miRNA transfection or endogenous miRNA knockdown. In parallel, we quantified mRNA levels using microarrays. Here we show that a single miRNA can repress the production of hundreds of proteins, but that this repression is typically relatively mild. A number of known features of the miRNA-binding site such as the seed sequence also govern repression of human protein synthesis, and we report additional target sequence characteristics. We demonstrate that, in addition to downregulating mRNA levels, miRNAs also directly repress translation of hundreds of genes. Finally, our data suggest that a miRNA can, by direct or indirect effects, tune protein synthesis from thousands of genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global analysis of changes in protein production induced by microRNAs.
Figure 2: miRNAs downregulate protein synthesis of hundreds of genes.
Figure 3: The miRNA seed explains a large fraction of downregulated protein synthesis.
Figure 4: miRNAs inhibit translation on a genome-wide scale.
Figure 5: Endogenous miRNA knockdown.

Similar content being viewed by others

References

  1. Ambros, V. The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  ADS  CAS  Google Scholar 

  2. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  CAS  Google Scholar 

  3. Bushati, N. & Cohen, S. M. microRNA functions. Annu. Rev. Cell Dev. Biol. 23, 175–205 (2007)

    Article  CAS  Google Scholar 

  4. He, L. & Hannon, G. J. MicroRNAs: small RNAs with a big role in gene regulation. Nature Rev. Genet. 5, 522–531 (2004)

    Article  CAS  Google Scholar 

  5. Lai, E. C. miRNAs: whys and wherefores of miRNA-mediated regulation. Curr. Biol. 15, R458–R460 (2005)

    Article  CAS  Google Scholar 

  6. Filipowicz, W., Bhattacharyya, S. N. & Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nature Rev. Genet. 9, 102–114 (2008)

    Article  CAS  Google Scholar 

  7. Shyu, A. B., Wilkinson, M. F. & van Hoof, A. Messenger RNA regulation: to translate or to degrade. EMBO J. 27, 471–481 (2008)

    Article  CAS  Google Scholar 

  8. Mathonnet, G. et al. MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317, 1764–1767 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Thermann, R. & Hentze, M. W. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447, 875–878 (2007)

    Article  ADS  CAS  Google Scholar 

  10. Wakiyama, M., Takimoto, K., Ohara, O. & Yokoyama, S. Let-7 microRNA-mediated mRNA deadenylation and translational repression in a mammalian cell-free system. Genes Dev. 21, 1857–1862 (2007)

    Article  CAS  Google Scholar 

  11. Liu, J. Control of protein synthesis and mRNA degradation by microRNAs. Curr. Opin. Cell. Biol. 20, 214–221 (2008)

    Article  CAS  Google Scholar 

  12. Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005)

    Article  ADS  CAS  Google Scholar 

  13. Bentwich, I. Prediction and validation of microRNAs and their targets. FEBS Lett. 579, 5904–5910 (2005)

    Article  CAS  Google Scholar 

  14. Hofacker, I. L. How microRNAs choose their targets. Nature Genet. 39, 1191–1192 (2007)

    Article  CAS  Google Scholar 

  15. Rajewsky, N. microRNA target predictions in animals. Nature Genet. 38 (Suppl). S8–S13 (2006)

    Article  CAS  Google Scholar 

  16. Sethupathy, P., Megraw, M. & Hatzigeorgiou, A. G. A guide through present computational approaches for the identification of mammalian microRNA targets. Nature Methods 3, 881–886 (2006)

    Article  CAS  Google Scholar 

  17. Beitzinger, M. et al. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol. 4, 76–84 (2007)

    Article  CAS  Google Scholar 

  18. Easow, G., Teleman, A. A. & Cohen, S. M. Isolation of microRNA targets by miRNP immunopurification. RNA 13, 1198–1204 (2007)

    Article  CAS  Google Scholar 

  19. Karginov, F. V. et al. A biochemical approach to identifying microRNA targets. Proc. Natl Acad. Sci. USA 104, 19291–19296 (2007)

    Article  ADS  CAS  Google Scholar 

  20. Hendrickson, D. G. et al. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS ONE 3, e2126 (2008)

    Article  ADS  Google Scholar 

  21. Aleman, L. M., Doench, J. & Sharp, P. A. Comparison of siRNA-induced off-target RNA and protein effects. RNA 13, 385–395 (2007)

    Article  CAS  Google Scholar 

  22. Vinther, J. et al. Identification of miRNA targets with stable isotope labeling by amino acids in cell culture. Nucleic Acids Res. 34, e107 (2006)

    Article  Google Scholar 

  23. Stefani, G. & Slack, F. J. Small non-coding RNAs in animal development. Nature Rev. Mol. Cell Biol. 9, 219–230 (2008)

    Article  CAS  Google Scholar 

  24. Mann, M. Functional and quantitative proteomics using SILAC. Nature Rev. Mol. Cell Biol. 7, 952–958 (2006)

    Article  CAS  Google Scholar 

  25. Ong, S. E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002)

    Article  CAS  Google Scholar 

  26. Schwanhaeusser, B., Gossen, M., Dittmar, G. & Selbach, M. Global analysis of cellular protein translation by pulsed SILAC. Proteomics (in the press)

  27. Milner, E., Barnea, E., Beer, I. & Admon, A. The turnover kinetics of major histocompatibility complex peptides of human cancer cells. Mol. Cell. Proteomics 5, 357–365 (2006)

    Article  CAS  Google Scholar 

  28. Pratt, J. M. et al. Dynamics of protein turnover, a missing dimension in proteomics. Mol. Cell. Proteomics 1, 579–591 (2002)

    Article  CAS  Google Scholar 

  29. Lam, Y. W., Lamond, A. I., Mann, M. & Andersen, J. S. Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr. Biol. 17, 749–760 (2007)

    Article  CAS  Google Scholar 

  30. Cox, J. & Mann, M. Is proteomics the new genomics? Cell 130, 395–398 (2007)

    Article  CAS  Google Scholar 

  31. Cravatt, B. F., Simon, G. M. & Yates, J. R. The biological impact of mass-spectrometry-based proteomics. Nature 450, 991–1000 (2007)

    Article  ADS  CAS  Google Scholar 

  32. Domon, B. & Aebersold, R. Mass spectrometry and protein analysis. Science 312, 212–217 (2006)

    Article  ADS  CAS  Google Scholar 

  33. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007)

    Article  CAS  Google Scholar 

  34. Sood, P. et al. Cell-type-specific signatures of microRNAs on target mRNA expression. Proc. Natl Acad. Sci. USA 103, 2746–2751 (2006)

    Article  ADS  CAS  Google Scholar 

  35. Nielsen, C. B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007)

    Article  CAS  Google Scholar 

  36. Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007)

    Article  CAS  Google Scholar 

  37. Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599–606 (2004)

    Article  CAS  Google Scholar 

  38. Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975–980 (2004)

    Article  CAS  Google Scholar 

  39. Schwarz, D. S. et al. Designing siRNA that distinguish between genes that differ by a single nucleotide. PLoS Genet. 2, e140 (2006)

    Article  Google Scholar 

  40. Vasudevan, S., Tong, Y. & Steitz, J. A. Switching from repression to activation: microRNAs can up-regulate translation. Science 318, 1931–1934 (2007)

    Article  ADS  CAS  Google Scholar 

  41. Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438–442 (2003)

    Article  CAS  Google Scholar 

  42. Stenvang, J. et al. The utility of LNA in microRNA-based cancer diagnostics and therapeutics. Semin. Cancer Biol. 18, 89–102 (2008)

    Article  CAS  Google Scholar 

  43. Wahlestedt, C. et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc. Natl Acad. Sci. USA 97, 5633–5638 (2000)

    Article  ADS  CAS  Google Scholar 

  44. Boyerinas, B. et al. Identification of let-7-regulated oncofetal genes. Cancer Res. 68, 2587–2591 (2008)

    Article  CAS  Google Scholar 

  45. Kuster, B., Schirle, M., Mallick, P. & Aebersold, R. Scoring proteomes with proteotypic peptide probes. Nature Rev. Mol. Cell Biol. 6, 577–583 (2005)

    Article  CAS  Google Scholar 

  46. Eulalio, A., Behm-Ansmant, I. & Izaurralde, E. P bodies: at the crossroads of post-transcriptional pathways. Nature Rev. Mol. Cell Biol. 8, 9–22 (2007)

    Article  CAS  Google Scholar 

  47. Nottrott, S., Simard, M. J. & Richter, J. D. Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nature Struct. Mol. Biol. 13, 1108–1114 (2006)

    Article  CAS  Google Scholar 

  48. Ong, S. E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nature Protocols 1, 2650–2660 (2007)

    Article  Google Scholar 

  49. Elias, J. E. & Gygi, S. P. Target-decoy search strategy for increased confidence in large-scale protein identifications by mass spectrometry. Nature Methods 4, 207–214 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Cox and M. Mann for early access to the MaxQuant software package, N. D. Socci for discussions, S. Schmidt, G. Born and N. Huebner for the hybridizations at the MDC microarray facility, C. Sommer for technical assistance, M. Huska and M. Andrade-Navarro for setting up the pSILAC website, P. Sharp for a CXCR4 luciferase construct, M. Peter for the IMP-1 reporters, and the Bundesministerium für Bildung und Forschung for funding mass spectrometry instrumentation. R.K. gratefully acknowledges a DAAD scholarship for research stays at the MDC. pSILAC and microarray data can be queried at http://psilac.mdc-berlin.de.

Author Contributions M.S. and N.R. conceived, designed and supervised the experiments. B.S. and N.T. performed the wet lab experiments. M.S., Z.F., R.K. and N.R. analysed genome-wide data. M.S., R.K. and N.R. interpreted the data. M.S. and N.R. wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Matthias Selbach or Nikolaus Rajewsky.

Supplementary information

Supplementary Information 1

The file contains Supplementary Methods, Supplementary Figures S1-S7 with Legends, Supplementary Table 1 and additional references. (PDF 2285 kb)

Supplementary Table 2

This table shows Gene ontology analysis of proteins which are predominately regulated at the level of translation. This file was originally omitted and was uploaded on 2nd April, 2009. (XLS 35 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Selbach, M., Schwanhäusser, B., Thierfelder, N. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008). https://doi.org/10.1038/nature07228

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07228

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing