Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis

Abstract

DNA methylation is an important epigenetic mark for transcriptional gene silencing (TGS) in diverse organisms1,2,3,4,5,6. Recent studies suggest that the methylation status of a number of genes is dynamically regulated by methylation and demethylation7,8,9,10. In Arabidopsis, active DNA demethylation is mediated by the ROS1 (repressor of silencing 1) subfamily of 5-methylcytosine DNA glycosylases through a base excision repair pathway8,10,11,12,13. These demethylases have critical roles in erasing DNA methylation and preventing TGS of target genes7,8,10. However, it is not known how the demethylases are targeted to specific sequences. Here we report the identification of ROS3, an essential regulator of DNA demethylation that contains an RNA recognition motif. Analysis of ros3 mutants and ros1 ros3 double mutants suggests that ROS3 acts in the same genetic pathway as ROS1 to prevent DNA hypermethylation and TGS. Gel mobility shift assays and analysis of ROS3 immunoprecipitate from plant extracts shows that ROS3 binds to small RNAs in vitro and in vivo. Immunostaining shows that ROS3 and ROS1 proteins co-localize in discrete foci dispersed throughout the nucleus. These results demonstrate a critical role for ROS3 in preventing DNA hypermethylation and suggest that DNA demethylation by ROS1 may be guided by RNAs bound to ROS3.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ros3 mutation causes transcriptional gene silencing.
Figure 2: DNA hypermethylation in ros3 and suppression of ros3 by nrpd1a.
Figure 3: ROS3 binds small RNAs.
Figure 4: Co-localization of ROS3 with ROS1 in the nucleus of Arabidopsis mesophyll cells and assay of ROS1 and ROS3 mRNA levels.

Similar content being viewed by others

References

  1. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002)

    Article  CAS  Google Scholar 

  2. Martienssen, R. A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293, 1070–1074 (2001)

    Article  CAS  Google Scholar 

  3. Tariq, M. & Paszkowski, J. DNA and histone methylation in plants. Trends Genet. 20, 244–251 (2004)

    Article  CAS  Google Scholar 

  4. Bender, J. DNA methylation and epigenetics. Annu. Rev. Plant Biol. 55, 41–68 (2004)

    Article  CAS  Google Scholar 

  5. Matzke, M. A. & Birchler, J. A. RNAi-mediated pathways in the nucleus. Nature Rev. Genet. 6, 24–35 (2005)

    Article  CAS  Google Scholar 

  6. Chan, S. W., Henderson, I. R. & Jacobsen, S. E. Gardening the genome: DNA methylation in Arabidopsis thaliana . Nature Rev. Genet. 6, 351–360 (2005)

    Article  CAS  Google Scholar 

  7. Zhu, J., Kapoor, A., Sridhar, V. V., Agius, F. & Zhu, J. K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis . Curr. Biol. 17, 54–59 (2007)

    Article  CAS  Google Scholar 

  8. Penterman, J. et al. DNA demethylation in the Arabidopsis genome. Proc. Natl Acad. Sci. USA 104, 6752–6757 (2007)

    Article  ADS  CAS  Google Scholar 

  9. Lister, R. et al. Highly integrated single base resolution maps of the epigenome in Arabidopsis . Cell 133, 523–536 (2008)

    Article  CAS  Google Scholar 

  10. Gong, Z. et al. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 111, 803–814 (2002)

    Article  CAS  Google Scholar 

  11. Agius, F., Kapoor, A. & Zhu, J. K. Role of the Arabidopsis DNA glycosylase/lyase ROS1 in active DNA demethylation. Proc. Natl Acad. Sci. USA 103, 11796–11801 (2006)

    Article  ADS  CAS  Google Scholar 

  12. Morales-Ruiz, T. et al. DEMETER and REPRESSOR OF SILENCING 1 encode 5-methylcytosine DNA glycosylases. Proc. Natl Acad. Sci. USA 103, 6853–6858 (2006)

    Article  ADS  CAS  Google Scholar 

  13. Gehring, M. et al. DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation. Cell 124, 495–506 (2006)

    Article  CAS  Google Scholar 

  14. Kapoor, A., Agius, F. & Zhu, J. K. Preventing transcriptional gene silencing by active DNA demethylation. FEBS Lett. 579, 5889–5898 (2005)

    Article  CAS  Google Scholar 

  15. Xiong, L. et al. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis . Genes Dev. 15, 1971–1984 (2001)

    Article  CAS  Google Scholar 

  16. Huettel, B. et al. Endogenous targets of RNA-directed DNA methylation and Pol IV in Arabidopsis . EMBO J. 25, 2828–2836 (2006)

    Article  CAS  Google Scholar 

  17. Zheng, X., Zhu, J., Kapoor, A. & Zhu, J. K. Role of Arabidopsis AGO6 in siRNA accumulation, DNA methylation and transcriptional gene silencing. EMBO J. 26, 1691–1701 (2007)

    Article  CAS  Google Scholar 

  18. Wassenegger, M. RNA-directed DNA methylation. Plant Mol. Biol. 43, 203–220 (2000)

    Article  CAS  Google Scholar 

  19. Vaucheret, H. & Fagard, M. Transcriptional gene silencing in plants: targets, inducers and regulators. Trends Genet. 17, 29–35 (2001)

    Article  CAS  Google Scholar 

  20. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004)

    Article  ADS  CAS  Google Scholar 

  21. Brodersen, P. & Voinnet, O. The diversity of RNA silencing pathways in plants. Trends Genet. 22, 268–280 (2006)

    Article  CAS  Google Scholar 

  22. Aravin, A. A. & Bourc’his, D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev. 22, 970–975 (2008)

    Article  CAS  Google Scholar 

  23. Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol. 13, 793–797 (2006)

    Article  CAS  Google Scholar 

  24. Janowski, B. A. et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nature Struct. Mol. Biol. 13, 787–792 (2006)

    Article  CAS  Google Scholar 

  25. Li, L. C. et al. Small dsRNAs induce transcriptional activation in human cells. Proc. Natl Acad. Sci. USA 103, 17337–17342 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Janowski, B. A. et al. Activating gene expression in mammalian cells with promoter-targeted duplex RNAs. Nature Chem. Biol. 3, 166–173 (2007)

    Article  CAS  Google Scholar 

  27. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301, 336–338 (2003)

    Article  ADS  CAS  Google Scholar 

  28. Ishitani, M., Xiong, L., Stevenson, B. & Zhu, J. K. Genetic analysis of osmotic and cold stress signal transduction in Arabidopsis: interactions and convergence of abscisic acid-dependent and abscisic acid-independent pathways. Plant Cell 9, 1935–1949 (1997)

    Article  CAS  Google Scholar 

  29. Dorweiler, J. E. et al. mediator of paramutation1 is required for establishment and maintenance of paramutation at multiple maize loci. Plant Cell 12, 2101–2118 (2000)

    Article  CAS  Google Scholar 

  30. Frommer, M. et al. A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA 89, 1827–1831 (1992)

    Article  ADS  CAS  Google Scholar 

  31. Lu, R. et al. Animal virus replication and RNAi-mediated antiviral silencing in Caenorhabditis elegans . Nature 436, 1040–1043 (2005)

    Article  ADS  CAS  Google Scholar 

  32. Jasencakova, Z., Meister, A., Walter, J., Turner, B. M. & Schubert, I. Histone H4 acetylation of euchromatin and heterochromatin is cell cycle dependent and correlated with replication rather than with transcription. Plant Cell 12, 2087–2100 (2000)

    Article  CAS  Google Scholar 

  33. Pontes, O. et al. The Arabidopsis chromatin-modifying nuclear siRNA pathway involves a nucleolar RNA processing center. Cell 126, 79–92 (2006)

    Article  CAS  Google Scholar 

  34. Sunkar, R. & Zhu, J. K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell 16, 2001–2019 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01GM070795 and R01GM059138 (J.-K.Z.), R01GM077590 and 1R01GM060380 (C.S.P.), Edward Mallinckrodt Foundation (O.P.) and China Scholarship Council scholarship 2007104542 (F.Z.).

Author Contributions X.Z. did the cloning, mutant analysis, RNA binding and other experiments. J.Z. and A.K. contributed to mutant analysis. D.M., F.Z. and K.I. contributed to DNA methylation analysis. W.-X.L. contributed to small RNA results. O.P. and C.S.P. contributed immunostaining data. J.-K.Z. designed the project and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Kang Zhu.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with Legends and Supplementary Tables 1-7. (PDF 758 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X., Pontes, O., Zhu, J. et al. ROS3 is an RNA-binding protein required for DNA demethylation in Arabidopsis. Nature 455, 1259–1262 (2008). https://doi.org/10.1038/nature07305

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07305

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing