Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes

Abstract

DNA double-strand breaks are generated by genotoxic agents and by cellular endonucleases as intermediates of several important physiological processes. The cellular response to genotoxic DNA breaks includes the activation of transcriptional programs known primarily to regulate cell-cycle checkpoints and cell survival1,2,3,4,5. DNA double-strand breaks are generated in all developing lymphocytes during the assembly of antigen receptor genes, a process that is essential for normal lymphocyte development. Here we show that in murine lymphocytes these physiological DNA breaks activate a broad transcriptional program. This program transcends the canonical DNA double-strand break response and includes many genes that regulate diverse cellular processes important for lymphocyte development. Moreover, the expression of several of these genes is regulated similarly in response to genotoxic DNA damage. Thus, physiological DNA double-strand breaks provide cues that can regulate cell-type-specific processes not directly involved in maintaining the integrity of the genome, and genotoxic DNA breaks could disrupt normal cellular functions by corrupting these processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rag DSBs activate a broad genetic program.
Figure 2: Rag DSB-dependent gene expression changes in developing B cells in vivo.
Figure 3: NF-κB activation in response to transient Rag DSBs.
Figure 4: Genotoxic DSBs promote changes in expression of lymphocyte-specific genes.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

The microarray gene expression data have been deposited in NCBI’s Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE9024.

References

  1. Shiloh, Y. ATM and related protein kinases: safeguarding genome integrity. Nature Rev. Cancer 3, 155–168 (2003)

    Article  CAS  Google Scholar 

  2. Rouse, J. & Jackson, S. P. Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547–551 (2002)

    Article  ADS  CAS  Google Scholar 

  3. Zhou, B. B. & Elledge, S. J. The DNA damage response: putting checkpoints in perspective. Nature 408, 433–439 (2000)

    Article  ADS  CAS  Google Scholar 

  4. Innes, C. L. et al. ATM requirement in gene expression responses to ionizing radiation in human lymphoblasts and fibroblasts. Mol. Cancer Res. 4, 197–207 (2006)

    Article  CAS  Google Scholar 

  5. Rashi-Elkeles, S. et al. Parallel induction of ATM-dependent pro- and antiapoptotic signals in response to ionizing radiation in murine lymphoid tissue. Oncogene 25, 1584–1592 (2006)

    Article  CAS  Google Scholar 

  6. Tonegawa, S. Somatic generation of antibody diversity. Nature 302, 575–581 (1983)

    Article  ADS  CAS  Google Scholar 

  7. Fugmann, S. D. et al. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18, 495–527 (2000)

    Article  CAS  Google Scholar 

  8. Rooney, S., Chaudhuri, J. & Alt, F. W. The role of the non-homologous end-joining pathway in lymphocyte development. Immunol. Rev. 200, 115–131 (2004)

    Article  CAS  Google Scholar 

  9. Meek, D. W. The p53 response to DNA damage. DNA Repair (Amst.) 3, 1049–1056 (2004)

    Article  CAS  Google Scholar 

  10. Guidos, C. J. et al. V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev. 10, 2038–2054 (1996)

    Article  CAS  Google Scholar 

  11. Perkins, N. D. Integrating cell-signalling pathways with NF-κB and IKK function. Nature Rev. Mol. Cell Biol. 8, 49–62 (2007)

    Article  CAS  Google Scholar 

  12. Huang, T. T., Wuerzberger-Davis, S. M., Wu, Z. H. & Miyamoto, S. Sequential modification of NEMO/IKKγ by SUMO-1 and ubiquitin mediates NF-κB activation by genotoxic stress. Cell 115, 565–576 (2003)

    Article  CAS  Google Scholar 

  13. Gerondakis, S. et al. Unravelling the complexities of the NF-κB signalling pathway using mouse knockout and transgenic models. Oncogene 25, 6781–6799 (2006)

    Article  CAS  Google Scholar 

  14. Bredemeyer, A. L. et al. ATM stabilizes DNA double-strand-break complexes during V(D)J recombination. Nature 442, 466–470 (2006)

    Article  ADS  CAS  Google Scholar 

  15. Muljo, S. A. & Schlissel, M. S. A small molecule Abl kinase inhibitor induces differentiation of Abelson virus-transformed pre-B cell lines. Nature Immunol. 4, 31–37 (2003)

    Article  CAS  Google Scholar 

  16. May, M. J. et al. Selective inhibition of NF-κB activation by a peptide that blocks the interaction of NEMO with the IκB kinase complex. Science 289, 1550–1554 (2000)

    Article  ADS  CAS  Google Scholar 

  17. Wu, Z. H., Shi, Y., Tibbetts, R. S. & Miyamoto, S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 311, 1141–1146 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Grawunder, U. et al. Expression of DNA-dependent protein kinase holoenzyme upon induction of lymphocyte differentiation and V(D)J recombination. Eur. J. Biochem. 241, 931–940 (1996)

    Article  CAS  Google Scholar 

  19. Kashatus, D., Cogswell, P. & Baldwin, A. S. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 20, 225–235 (2006)

    Article  CAS  Google Scholar 

  20. Amaravadi, R. & Thompson, C. B. The survival kinases Akt and Pim as potential pharmacological targets. J. Clin. Invest. 115, 2618–2624 (2005)

    Article  CAS  Google Scholar 

  21. Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004)

    Article  CAS  Google Scholar 

  22. Rosen, S. D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol. 22, 129–156 (2004)

    Article  CAS  Google Scholar 

  23. Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol. 14, 535–544 (2002)

    Article  CAS  Google Scholar 

  24. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004)

    Article  ADS  CAS  Google Scholar 

  25. Shiow, L. R. et al. CD69 acts downstream of interferon-α/β to inhibit S1P1 and lymphocyte egress from lymphoid organs. Nature 440, 540–544 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Pearce, G. et al. Signaling protein SWAP-70 is required for efficient B cell homing to lymphoid organs. Nature Immunol. 7, 827–834 (2006)

    Article  CAS  Google Scholar 

  27. Ladi, E., Yin, X., Chtanova, T. & Robey, E. A. Thymic microenvironments for T cell differentiation and selection. Nature Immunol. 7, 338–343 (2006)

    Article  CAS  Google Scholar 

  28. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008)

    Article  CAS  Google Scholar 

  29. Tokoyoda, K. et al. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 707–718 (2004)

    Article  CAS  Google Scholar 

  30. Nagasawa, T. Microenvironmental niches in the bone marrow required for B-cell development. Nature Rev. Immunol. 6, 107–116 (2006)

    Article  CAS  Google Scholar 

  31. Rooney, S. et al. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol. Cell 10, 1379–1390 (2002)

    Article  CAS  Google Scholar 

  32. Gu, Y. et al. Growth retardation and leaky SCID phenotype of Ku70-deficient mice. Immunity 7, 653–665 (1997)

    Article  CAS  Google Scholar 

  33. Mandik-Nayak, L., Racz, J., Sleckman, B. P. & Allen, P. M. Autoreactive marginal zone B cells are spontaneously activated but lymph node B cells require T cell help. J. Exp. Med. 203, 1985–1998 (2006)

    Article  CAS  Google Scholar 

  34. Brockman, J. A. et al. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15, 2809–2818 (1995)

    Article  CAS  Google Scholar 

  35. Ramsden, D. A. & Gellert, M. Formation and resolution of double-strand break intermediates in V(D)J rearrangement. Genes Dev. 9, 2409–2420 (1995)

    Article  CAS  Google Scholar 

  36. Khor, B. et al. Proteasome activator PA200 is required for normal spermatogenesis. Mol. Cell. Biol. 26, 2999–3007 (2006)

    Article  CAS  Google Scholar 

  37. Weaver, B. K., Bohn, E., Judd, B. A., Gil, M. P. & Schreiber, R. D. ABIN-3: a molecular basis for species divergence in interleukin-10-induced anti-inflammatory actions. Mol. Cell. Biol. 27, 4603–4616 (2007)

    Article  CAS  Google Scholar 

  38. Weng, L. et al. Rosetta error model for gene expression analysis. Bioinformatics 22, 1111–1121 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bednarski, B. Van Honten and M. Diaz for critical review of the manuscript, F. W. Alt for providing us with the Artemis-/- mice and D. Ballard for providing us with the IκBα-ΔN construct. This research is supported by the National Institutes of Health (NIH, grant AI47829) and the Washington University Department of Pathology and Immunology (to B.P.S.); the Department of Pathology and Center for Childhood Cancer Research of the Children’s Hospital of Philadelphia, and the Abramson Family Cancer Research Institute (to C.H.B.); and the intramural research program of the NIH, National Institute of Environmental Health Sciences (to R.S.P.). B.P.S. is a recipient of a Research Scholar Award from the American Cancer Society. C.H.B. is a Pew Scholar in the Biomedical Sciences. A.L.B. is supported by a post-doctoral training grant from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry P. Sleckman.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-18 with Legends and Supplementary Tables 1-5 (PDF 4294 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bredemeyer, A., Helmink, B., Innes, C. et al. DNA double-strand breaks activate a multi-functional genetic program in developing lymphocytes. Nature 456, 819–823 (2008). https://doi.org/10.1038/nature07392

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07392

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing