Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Origin and function of ubiquitin-like proteins

Abstract

Eukaryotic proteins can be modified through attachment to various small molecules and proteins. One such modification is conjugation to ubiquitin and ubiquitin-like proteins (UBLs), which controls an enormous range of physiological processes. Bound UBLs mainly regulate the interactions of proteins with other macromolecules, for example binding to the proteasome or recruitment to chromatin. The various UBL systems use related enzymes to attach specific UBLs to proteins (or other molecules), and most of these attachments are transient. There is increasing evidence suggesting that such UBL–protein modification evolved from prokaryotic sulphurtransferase systems or related enzymes. Moreover, proteins similar to UBL-conjugating enzymes and UBL-deconjugating enzymes seem to have already been widespread at the time of the last common ancestor of eukaryotes, suggesting that UBL–protein conjugation did not first evolve in eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cellular processes that depend on ubiquitin conjugation.
Figure 2: Polyubiquitin-tagged proteins are often targeted for proteasome-mediated degradation.
Figure 3: General functions of UBL tagging.
Figure 4: At the crossroads of UBL–protein modification and sulphur transfer.

Similar content being viewed by others

References

  1. Hochstrasser, M. Evolution and function of ubiquitin-like protein-conjugation systems. Nature Cell Biol. 2, E153–E157 (2000).

    Article  CAS  Google Scholar 

  2. Pickart, C. M. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70, 503–533 (2001).

    Article  CAS  Google Scholar 

  3. Xu, P. & Peng, J. Dissecting the ubiquitin pathway by mass spectrometry. Biochim. Biophys. Acta 1764, 1940–1947 (2006).

    Article  CAS  Google Scholar 

  4. Kerscher, O., Felberbaum, R. & Hochstrasser, M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu. Rev. Cell Dev. Biol. 22, 159–180 (2006).

    Article  CAS  Google Scholar 

  5. Sharp, P. M. & Li, W.-H. Molecular evolution of ubiquitin genes. Trends Ecol. Evol. 2, 328–332 (1987).

    Article  CAS  Google Scholar 

  6. Iyer, L. M., Burroughs, A. M. & Aravind, L. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like β-grasp domains. Genome Biol. 7, R60 (2006). Highly sensitive sequence comparisons reveal a plethora of prokaryotic UBL/β-grasp proteins and potential UBL-modification pathways.

    Article  Google Scholar 

  7. Begley, T. P. Cofactor biosynthesis: an organic chemist's treasure trove. Nat. Prod. Rep. 23, 15–25 (2006).

    Article  CAS  Google Scholar 

  8. Mukhopadhyay, D. & Riezman, H. Proteasome-independent functions of ubiquitin in endocytosis and signaling. Science 315, 201–205 (2007).

    Article  ADS  CAS  Google Scholar 

  9. Schwartz, A. L. & Ciechanover, A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu. Rev. Pharmacol. Toxicol. 49, 73–96 (2009).

    Article  CAS  Google Scholar 

  10. Volker, C. & Lupas, A. N. Molecular evolution of proteasomes. Curr. Top. Microbiol. Immunol. 268, 1–22 (2002).

    CAS  PubMed  Google Scholar 

  11. Cavalier-Smith, T. Rooting the tree of life by transition analyses. Biol. Direct 1, 19 (2006).

    Article  Google Scholar 

  12. Haas, A. L., Ahrens, P., Bright, P. M. & Ankel, H. Interferon induces a 15-kilodalton protein exhibiting marked homology to ubiquitin. J. Biol. Chem. 262, 11315–11323 (1987).

    CAS  PubMed  Google Scholar 

  13. Loeb, K. R. & Haas, A. L. The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J. Biol. Chem. 267, 7806–7813 (1992).

    CAS  PubMed  Google Scholar 

  14. Yuan, W. & Krug, R. M. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20, 362–371 (2001).

    Article  CAS  Google Scholar 

  15. Zhao, C. et al. The UbcH8 ubiquitin E2 enzyme is also the E2 enzyme for ISG15, an IFN-α/β-induced ubiquitin-like protein. Proc. Natl Acad. Sci. USA 101, 7578–7582 (2004).

    Article  ADS  CAS  Google Scholar 

  16. Kim, K. I., Giannakopoulos, N. V., Virgin, H. W. & Zhang, D. E. Interferon-inducible ubiquitin E2, Ubc8, is a conjugating enzyme for protein ISGylation. Mol. Cell. Biol. 24, 9592–9600 (2004).

    Article  CAS  Google Scholar 

  17. Durfee, L. A., Kelley, M. L. & Huibregtse, J. M. The basis for selective E1–E2 interactions in the ISG15 conjugation system. J. Biol. Chem. 283, 23895–23902 (2008).

    Article  CAS  Google Scholar 

  18. Lenschow, D. J. et al. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl Acad. Sci. USA 104, 1371–1376 (2007).

    Article  ADS  CAS  Google Scholar 

  19. Okumura, A., Pitha, P. M. & Harty, R. N. ISG15 inhibits Ebola VP40 VLP budding in an L-domain-dependent manner by blocking Nedd4 ligase activity. Proc. Natl Acad. Sci. USA 105, 3974–3979 (2008).

    Article  ADS  CAS  Google Scholar 

  20. Malakhova, O. A. & Zhang, D. E. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem. 283, 8783–8787 (2008).

    Article  CAS  Google Scholar 

  21. Peng, J. et al. A proteomics approach to understanding protein ubiquitination. Nature Biotechnol. 21, 921–926 (2003).

    Article  CAS  Google Scholar 

  22. Ohsumi, Y. Molecular dissection of autophagy: two ubiquitin-like systems. Nature Rev. Mol. Cell Biol. 2, 211–216 (2001).

    Article  CAS  Google Scholar 

  23. Liu, Y., Fallon, L., Lashuel, H. A., Liu, Z. & Lansbury, P. T. Jr . The UCH-L1 gene encodes two opposing enzymatic activities that affect α-synuclein degradation and Parkinson's disease susceptibility. Cell 111, 209–218 (2002).

    Article  CAS  Google Scholar 

  24. Dassa, B., Yanai, I. & Pietrokovski, S. New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends Genet. 20, 538–542 (2004).

    Article  CAS  Google Scholar 

  25. Huang, T. T. et al. Regulation of monoubiquitinated PCNA by DUB autocleavage. Nature Cell Biol. 8, 339–347 (2006).

    CAS  PubMed  Google Scholar 

  26. Burroughs, A. M., Balaji, S., Iyer, L. M. & Aravind, L. Small but versatile: the extraordinary functional and structural diversity of the β-grasp fold. Biol. Direct 2, 18 (2007).

    Article  Google Scholar 

  27. Hershko, A. & Ciechanover, A. The ubiquitin system for protein degradation. Annu. Rev. Biochem. 61, 761–807 (1992).

    Article  CAS  Google Scholar 

  28. Goldberg, A. L. & Rock, K. L. Proteolysis, proteasomes and antigen presentation. Nature 357, 375–379 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  Google Scholar 

  30. Thrower, J. S., Hoffman, L., Rechsteiner, M. & Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19, 94–102 (2000).

    Article  CAS  Google Scholar 

  31. Deveraux, Q., Ustrell, V., Pickart, C. & Rechsteiner, M. A 26 S protease subunit that binds ubiquitin conjugates. J. Biol. Chem. 269, 7059–7061 (1994).

    CAS  PubMed  Google Scholar 

  32. Lam, Y. A., Lawson, T. G., Velayutham, M., Zweier, J. L. & Pickart, C. M. A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763–767 (2002).

    Article  ADS  CAS  Google Scholar 

  33. Husnjak, K. et al. Proteasome subunit Rpn13 is a novel ubiquitin receptor. Nature 453, 481–488 (2008).

    Article  ADS  CAS  Google Scholar 

  34. Chen, L. & Madura, K. Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol. Cell. Biol. 22, 4902–4913 (2002).

    Article  CAS  Google Scholar 

  35. Funakoshi, M., Sasaki, T., Nishimoto, T. & Kobayashi, H. Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc. Natl Acad. Sci. USA 99, 745–750 (2002).

    Article  ADS  CAS  Google Scholar 

  36. Kim, I., Mi, K. & Rao, H. Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol. Biol. Cell 15, 3357–3365 (2004).

    Article  CAS  Google Scholar 

  37. Hurley, J. H., Lee, S. & Prag, G. Ubiquitin-binding domains. Biochem. J. 399, 361–372 (2006).

    Article  CAS  Google Scholar 

  38. Varadan, R. et al. Solution conformation of Lys63-linked di-ubiquitin chain provides clues to functional diversity of polyubiquitin signaling. J. Biol. Chem. 279, 7055–7063 (2004).

    Article  CAS  Google Scholar 

  39. Kerscher, O. SUMO junction — what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8, 550–555 (2007).

    Article  CAS  Google Scholar 

  40. Song, J., Zhang, Z., Hu, W. & Chen, Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280, 40122–40129 (2005).

    Article  CAS  Google Scholar 

  41. Reverter, D. & Lima, C. D. Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex. Nature 435, 687–692 (2005).

    Article  ADS  CAS  Google Scholar 

  42. Hochstrasser, M. in Protein Degradation: The Ubiquitin-Proteasome System (eds Mayer, R. J., Ciechanover, A. & Rechsteiner, M.) 249–278 (Wiley, 2006).

    Google Scholar 

  43. Archer, C. T. et al. Physical and functional interactions of monoubiquitylated transactivators with the proteasome. J. Biol. Chem. 283, 21789–21798 (2008).

    Article  CAS  Google Scholar 

  44. Mahajan, R., Delphin, C., Guan, T., Gerace, L. & Melchior, F. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88, 97–107 (1997).

    Article  CAS  Google Scholar 

  45. McGrath, J. P., Jentsch, S. & Varshavsky, A. UBA1: an essential yeast gene encoding ubiquitin-activating enzyme. EMBO J. 10, 227–236 (1991).

    Article  CAS  Google Scholar 

  46. Rajagopalan, K. V. Biosynthesis and processing of the molybdenum cofactors. Biochem. Soc. Trans. 25, 757–761 (1997).

    Article  CAS  Google Scholar 

  47. Taylor, S. V. et al. Thiamin biosynthesis in Escherichia coli. Identification of this thiocarboxylate as the immediate sulfur donor in the thiazole formation. J. Biol. Chem. 273, 16555–16560 (1998).

    Article  CAS  Google Scholar 

  48. Appleyard, M. V. et al. The Aspergillus nidulans cnxF gene and its involvement in molybdopterin biosynthesis. Molecular characterization and analysis of in vivo generated mutants. J. Biol. Chem. 273, 14869–14876 (1998).

    Article  CAS  Google Scholar 

  49. Leimkuhler, S., Wuebbens, M. M. & Rajagopalan, K. V. Characterization of Escherichia coli MoeB and its involvement in the activation of molybdopterin synthase for the biosynthesis of the molybdenum cofactor. J. Biol. Chem. 276, 34695–34701 (2001).

    Article  CAS  Google Scholar 

  50. Rudolph, M. J., Wuebbens, M. M., Rajagopalan, K. V. & Schindelin, H. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nature Struct. Biol. 8, 42–46 (2001).

    Article  CAS  Google Scholar 

  51. Wang, C., Xi, J., Begley, T. P. & Nicholson, L. K. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nature Struct. Biol. 8, 47–51 (2001).

    Article  Google Scholar 

  52. Huang, D. T., Walden, H., Duda, D. & Schulman, B. A. Ubiquitin-like protein activation. Oncogene 23, 1958–1971 (2004).

    Article  CAS  Google Scholar 

  53. Duda, D. M., Walden, H., Sfondouris, J. & Schulman, B. A. Structural analysis of Escherichia coli ThiF. J. Mol. Biol. 349, 774–786 (2005).

    Article  CAS  Google Scholar 

  54. Furukawa, K., Mizushima, N., Noda, T. & Ohsumi, Y. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275, 7462–7465 (2000).

    Article  CAS  Google Scholar 

  55. Goehring, A. S., Rivers, D. M. & Sprague, G. F. Jr . Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot. Cell 2, 930–936 (2003).

    Article  CAS  Google Scholar 

  56. Schmitz, J. et al. The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47, 6479–6489 (2008). Identifies a persulphide in Uba4 and formation of an Urm1 thiocarboxylate, suggesting a dual function in protein conjugation and sulphur transfer.

    Article  CAS  Google Scholar 

  57. Mueller, E. G. Trafficking in persulfides: delivering sulfur in biosynthetic pathways. Nature Chem. Biol. 2, 185–194 (2006).

    Article  CAS  Google Scholar 

  58. Nakai, Y., Nakai, M. & Hayashi, H. Thio-modification of yeast cytosolic tRNA requires a ubiquitin-related system that resembles bacterial sulfur transfer systems. J. Biol. Chem. 283, 27469–27476 (2008).

    Article  CAS  Google Scholar 

  59. Huang, B., Lu, J. & Bystrom, A. S. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae . RNA 14, 2183–2194 (2008). This study and ref. 58 implicate the Urm1 thiocarboxylate as a potential sulphur carrier in selective tRNA thiolation.

    Article  CAS  Google Scholar 

  60. Burroughs, A. M., Jaffee, M., Iyer, L. M. & Aravind, L. Anatomy of the E2 ligase fold: implications for enzymology and evolution of ubiquitin/Ub-like protein conjugation. J. Struct. Biol. 162, 205–218 (2008).

    Article  CAS  Google Scholar 

  61. Amerik, A. Y. & Hochstrasser, M. Mechanism and function of deubiquitinating enzymes. Biochim. Biophys. Acta 1695, 189–207 (2004).

    Article  CAS  Google Scholar 

  62. Burns, K. E. et al. Reconstitution of a new cysteine biosynthetic pathway in Mycobacterium tuberculosis . J. Am. Chem. Soc. 127, 11602–11603 (2005).

    Article  CAS  Google Scholar 

  63. Godert, A. M., Jin, M., McLafferty, F. W. & Begley, T. P. Biosynthesis of the thioquinolobactin siderophore: an interesting variation on sulfur transfer. J. Bacteriol. 189, 2941–2944 (2007).

    Article  CAS  Google Scholar 

  64. Roush, R. F., Nolan, E. M., Lohr, F. & Walsh, C. T. Maturation of an Escherichia coli ribosomal peptide antibiotic by ATP-consuming N–P bond formation in microcin C7. J. Am. Chem. Soc. 130, 3603–3609 (2008). Describes the role of an E1-like adenylating enzyme in the activation of a non-β-grasp peptide.

    Article  CAS  Google Scholar 

  65. Pearce, M. J., Mintseris, J., Ferreyra, J., Gygi, S. P. & Darwin, K. H. Ubiquitin-like protein involved in the proteasome pathway of Mycobacterium tuberculosis. Science 322, 1104–1107 (2008). Identifies a non-β-grasp protein in M. tuberculosis that modifies selected protein substrates and targets them for proteasomal degradation.

    Article  ADS  CAS  Google Scholar 

  66. Iyer, L. M., Burroughs, A. M. & Aravind, L. Unraveling the biochemistry and provenance of pupylation: a prokaryotic analog of ubiquitination. Biol. Direct 3, 45 (2008).

    Article  Google Scholar 

  67. Steinacher, R. & Schar, P. Functionality of human thymine DNA glycosylase requires SUMO-regulated changes in protein conformation. Curr. Biol. 15, 616–623 (2005).

    Article  CAS  Google Scholar 

  68. Ulrich, H. D. How to activate a damage-tolerant polymerase: consequences of PCNA modifications by ubiquitin and SUMO. Cell Cycle 3, 15–18 (2004).

    Article  CAS  Google Scholar 

  69. Palacios, S. et al. Quantitative SUMO-1 modification of a vaccinia virus protein is required for its specific localization and prevents its self-association. Mol. Biol. Cell 16, 2822–2835 (2005).

    Article  CAS  Google Scholar 

  70. Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103–106 (2004).

    Article  CAS  Google Scholar 

  71. Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127–130 (2005).

    Article  ADS  CAS  Google Scholar 

  72. Ravid, T. & Hochstrasser, M. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nature Cell Biol. 9, 422–427 (2007).

    Article  CAS  Google Scholar 

  73. Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177, 613–624 (2007).

    Article  CAS  Google Scholar 

  74. Lee, I. & Schindelin, H. Structural insights into E1-catalyzed ubiquitin activation and transfer to conjugating enzymes. Cell 134, 268–278 (2008).

    Article  CAS  Google Scholar 

  75. Nijman, S. M. et al. A genomic and functional inventory of deubiquitinating enzymes. Cell 123, 773–786 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I thank V. J. Rubenstein, A. Kusmierczyk and J. Bloom for comments on the manuscript. Work in my laboratory is funded by grants from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the author (mark.hochstrasser@yale.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hochstrasser, M. Origin and function of ubiquitin-like proteins. Nature 458, 422–429 (2009). https://doi.org/10.1038/nature07958

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07958

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing