Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of the pollen self-incompatibility determinant in Papaver rhoeas

A Corrigendum to this article was published on 02 December 2015

This article has been updated

Abstract

Higher plants produce seed through pollination, using specific interactions between pollen and pistil. Self-incompatibility is an important mechanism used in many species to prevent inbreeding; it is controlled by a multi-allelic S locus1,2. ‘Self’ (incompatible) pollen is discriminated from ‘non-self’ (compatible) pollen by interaction of pollen and pistil S locus components, and is subsequently inhibited. In Papaver rhoeas, the pistil S locus product is a small protein that interacts with incompatible pollen, triggering a Ca2+-dependent signalling network, resulting in pollen inhibition and programmed cell death3,4,5,6,7. Here we have cloned three alleles of a highly polymorphic pollen-expressed gene, PrpS (Papaver rhoeas pollen S), from Papaver and provide evidence that this encodes the pollen S locus determinant. PrpS is a single-copy gene linked to the pistil S gene (currently called S, but referred to hereafter as PrsS for Papaver rhoeas stigma S determinant). Sequence analysis indicates that PrsS and PrpS are equally ancient and probably co-evolved. PrpS encodes a novel 20-kDa protein. Consistent with predictions that it is a transmembrane protein, PrpS is associated with the plasma membrane. We show that a predicted extracellular loop segment of PrpS interacts with PrsS and, using PrpS antisense oligonucleotides, we demonstrate that PrpS is involved in S-specific inhibition of incompatible pollen. Identification of PrpS represents a major advance in our understanding of the Papaver self-incompatibility system. As a novel cell–cell recognition determinant it contributes to the available information concerning the origins and evolution of cell–cell recognition systems involved in discrimination between self and non-self, which also include histocompatibility systems in primitive chordates and vertebrates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Organization and expression of PrpS1 .
Figure 2: PrpS is pollen-membrane associated.
Figure 3: PrpS determines S-specific pollen inhibition.

Similar content being viewed by others

Accession codes

Primary accessions

EMBL/GenBank/DDBJ

Data deposits

PrpS1 , PrpS3 and PrpS8 sequences have been deposited in the EMBL Nucleotide Sequence Database (http://www.ebi.ac.uk/embl/) as accessions AM743176, FN178511 and AM743177.

Change history

  • 02 December 2015

    Nature 459, 992–995 (2009); doi: 10.1038/nature08027 Recently, it has come to our attention that in the left panel of Fig. 2b of this Letter, the lanes labelled S2S4 and S6S17 were duplicated. We have reviewed the original data. It seems likely that a duplicated part of the blot was placed over laneS6S17 to aid alignment of molecular mass markers and inadvertently left there.

References

  1. Takayama, S. & Isogai, A. Self-incompatibility in plants. Annu. Rev. Plant Biol. 56, 467–489 (2005)

    CAS  PubMed  Google Scholar 

  2. Franklin-Tong, V. E. (ed.) Self-Incompatibility in Flowering Plants: Evolution, Diversity, and Mechanisms (Springer, 2008)

    Google Scholar 

  3. de Graaf, B. H. J. et al. Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444, 490–493 (2006)

    ADS  CAS  PubMed  Google Scholar 

  4. Franklin-Tong, V. E., Ride, J. P., Read, N. D., Trewavas, A. J. & Franklin, F. C. H. The self-incompatibility response in Papaver rhoeas is mediated by cytosolic-free calcium. Plant J. 4, 163–177 (1993)

    CAS  Google Scholar 

  5. Snowman, B. N., Kovar, D. R., Shevchenko, G., Franklin-Tong, V. E. & Staiger, C. J. Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14, 2613–2626 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomas, S. G. & Franklin-Tong, V. E. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429, 305–309 (2004)

    ADS  CAS  PubMed  Google Scholar 

  7. Bosch, M. & Franklin-Tong, V. E. Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen. Proc. Natl Acad. Sci. USA 104, 18327–18332 (2007)

    ADS  CAS  PubMed  Google Scholar 

  8. Foote, H. C. C. et al. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc. Natl Acad. Sci. USA 91, 2265–2269 (1994)

    ADS  CAS  PubMed  Google Scholar 

  9. Kurup, S. et al. Identification and cloning of related self-incompatibility S-genes in Papaver rhoeas and Papaver nudicaule . Sex. Plant Reprod. 11, 192–198 (1998)

    CAS  Google Scholar 

  10. Walker, E. A. et al. Molecular analysis of two functional homologues of the S 3 allele of the Papaver rhoeas self-incompatibility gene isolated from different populations. Plant Mol. Biol. 30, 983–994 (1996)

    CAS  PubMed  Google Scholar 

  11. Thomas, S. G., Huang, S., Li, S., Staiger, C. J. & Franklin-Tong, V. E. Actin depolymerization is sufficient to induce programmed cell death in self-incompatible pollen. J. Cell Biol. 174, 221–229 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hearn, M. J., Franklin, F. C. H. & Ride, J. P. Identification of a membrane glycoprotein in pollen of Papaver rhoeas which binds stigmatic self-incompatibility (S-) proteins. Plant J. 9, 467–475 (1996)

    CAS  Google Scholar 

  13. Ioerger, T. R., Clark, A. G. & Kao, T.-H. Polymorphism at the self-incompatibility locus in Solanaceae predates speciation. Proc. Natl Acad. Sci. USA 87, 9732–9735 (1990)

    ADS  CAS  PubMed  Google Scholar 

  14. Kohn, J. R. in Self-Incompatibility in Flowering Plants: Evolution, Diversity, and Mechanisms (ed. Franklin-Tong, V. E.) 103–121 (Springer, 2008)

    Google Scholar 

  15. Charlesworth, D. Multi-allelic self-incompatibility polymorphisms in plants. Bioessays 17, 31–38 (1995)

    CAS  Google Scholar 

  16. Newbigin, E., Paape, T. & Kohn, J. R. RNase-based self-incompatibility: puzzled by pollen S. Plant Cell 20, 2286–2292 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. von Heijne, G. & Gavel, Y. Topogenic signals in integral membrane proteins. Eur. J. Biochem. 174, 671–678 (1988)

    CAS  PubMed  Google Scholar 

  18. Biris, N. et al. Mapping the binding domains of the αIIb subunit. Eur. J. Biochem. 270, 3760–3767 (2003)

    CAS  PubMed  Google Scholar 

  19. Moutinho, A. et al. Antisense perturbation of protein function in living pollen tubes. Sex. Plant Reprod. 14, 101–104 (2001)

    CAS  Google Scholar 

  20. McClure, B. & Franklin-Tong, V. Gametophytic self-incompatibility: understanding the cellular mechanisms involved in “self” pollen tube inhibition. Planta 224, 233–245 (2006)

    CAS  PubMed  Google Scholar 

  21. Sijacic, P. et al. Identification of the pollen determinant of S-RNase-mediated self-incompatibility. Nature 429, 302–305 (2004)

    ADS  CAS  PubMed  Google Scholar 

  22. Qiao, H. et al. The F-box protein AhSLF-S2 controls the pollen function of S-RNase-based self-incompatibility. Plant Cell 16, 2307–2322 (2004)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Stein, J. C., Howlett, B., Boyes, D. C., Nasrallah, M. E. & Nasrallah, J. B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea . Proc. Natl Acad. Sci. USA 88, 8816–8820 (1991)

    ADS  CAS  PubMed  Google Scholar 

  24. Dangl, J. L. & Jones, J. D. G. Plant pathogens and integrated defence responses to infection. Nature 411, 826–833 (2001)

    ADS  CAS  PubMed  Google Scholar 

  25. Burnet, F. M. “Self-recognition” in colonial marine forms and flowering plants in relation to the evolution of immunity. Nature 232, 230–235 (1971)

    ADS  CAS  PubMed  Google Scholar 

  26. De Tomaso, A. W. et al. Isolation and characterization of a protochordate histocompatibility locus. Nature 438, 454–459 (2005)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Scofield, V. L., Schlumpberger, J. M., West, L. A. & Weissman, I. L. Protochordate allorecognition is controlled by a MHC-like gene system. Nature 295, 499–502 (1982)

    ADS  CAS  PubMed  Google Scholar 

  28. Worley, K. C., Wiese, B. A. & Smith, R. F. BEAUTY: an enhanced BLAST-based search tool that integrates multiple biological information resources into sequence similarity search results. Genome Res. 5, 173–184 (1995)

    CAS  PubMed  Google Scholar 

  29. Rozas, J., Sanchez-DelBarrio, J. C., Messeguer, X., Rozas, R. & Dna, S. P. DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497 (2003)

    CAS  PubMed  Google Scholar 

  30. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    CAS  PubMed  Google Scholar 

  31. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990)

    CAS  PubMed  Google Scholar 

  32. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    CAS  PubMed  Google Scholar 

  33. Moller, S., Croning, M. D. R. & Apweiler, R. Evaluation of methods for the prediction of membrane spanning regions. Bioinformatics 17, 646–653 (2001)

    CAS  PubMed  Google Scholar 

  34. Fisher, R. A. Statistical Methods and Scientific Inference (Hafner, 1956)

    MATH  Google Scholar 

  35. Bradford, M. M. A dye binding assay for protein. Anal. Biochem. 72, 248–254 (1976)

    CAS  Google Scholar 

  36. Snowman, B. N., Kovar, D. R., Shevchenko, G., Franklin-Tong, V. E. & Staiger, C. J. Signal-mediated depolymerization of actin in pollen during the self-incompatibility response. Plant Cell 14, 2613–2626 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Poulter, N. S., Vatovec, S. & Franklin-Tong, V. E. Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol. 146, 1358–1367 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Franklin-Tong, V. E., Lawrence, M. J. & Franklin, F. C. H. Self-incompatibility in Papaver rhoeas. 1. Characterization of the stigmatic component. Heredity 61, 286 (1988)

    Google Scholar 

  39. Foote, H. C. C. et al. Cloning and expression of a distinctive class of self-incompatibility (S) gene from Papaver rhoeas L. Proc. Natl Acad. Sci. USA 91, 2265–2269 (1994)

    ADS  CAS  PubMed  Google Scholar 

  40. Geitmann, A., Snowman, B. N., Emons, A. M. C. & Franklin-Tong, V. E. Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in Papaver rhoeas . Plant Cell 12, 1239–1251 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jordan, N. D., Franklin, F. C. H. & Franklin-Tong, V. E. Evidence for DNA fragmentation triggered in the self-incompatibility response in pollen of Papaver rhoeas . Plant J. 23, 471–479 (2000)

    CAS  PubMed  Google Scholar 

  42. Thomas, S. G. & Franklin-Tong, V. E. Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429, 305–309 (2004)

    ADS  CAS  PubMed  Google Scholar 

  43. Bailey, N. T. J. Statistical Methods in Biology (The English Universities Press, 1959)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank S. Chen-Ying for contributing preliminary data and horticultural staff for growing and collecting plant material. We also thank J. Kohn for help and advice on sequence analysis, and A. Lovering and T. Hakoshima for advice regarding structural predictions. We wish to acknowledge the long-term contribution from M. Lawrence, who initiated studies on Papaver self-incompatibility. Work in the laboratories of F.C.H.F. and V.E.F.-T. is funded by the Biotechnology and Biological Sciences Research Council (BBSRC); this work was supported by grant BB/C501325/1.

Author Contributions M.J.W., B.H.J.d.G. and N.H. contributed equally to this work. F.C.H.F. and V.E.F.-T. are joint senior authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vernonica E. Franklin-Tong.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-4 with extended Legends and Supplementary Tables 1-2. (PDF 1180 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheeler, M., de Graaf, B., Hadjiosif, N. et al. Identification of the pollen self-incompatibility determinant in Papaver rhoeas. Nature 459, 992–995 (2009). https://doi.org/10.1038/nature08027

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08027

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing