Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microbial community structure and its functional implications

Abstract

Marine microbial communities are engines of globally important processes, such as the marine carbon, nitrogen and sulphur cycles. Recent data on the structures of these communities show that they adhere to universal biological rules. Co-occurrence patterns can help define species identities, and systems-biology tools are revealing networks of interacting microorganisms. Some microbial systems are found to change predictably, helping us to anticipate how microbial communities and their activities will shift in a changing world.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rank abundance relationships for bacterial operational taxonomic units.
Figure 2: Association networks.

Similar content being viewed by others

References

  1. Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).

    Article  CAS  ADS  Google Scholar 

  2. Pace, N. R., Stahl, D. A., Lane, D. L. & Olsen, G. J. The analysis of natural microbial populations by rRNA sequences. Adv. Microb. Ecol. 9, 1–55 (1986).

    Article  CAS  Google Scholar 

  3. Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).

    Article  CAS  Google Scholar 

  4. Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    Article  Google Scholar 

  5. Massana, R. & Pedrós-Alió, C. Unveiling new microbial eukaryotes in the surface ocean. Curr. Opin. Microbiol. 11, 213–218 (2008).

    Article  Google Scholar 

  6. Giovannoni, S. J. & Stingl, U. Molecular diversity and ecology of microbial plankton. Nature 437, 343–348 (2005).

    Article  CAS  ADS  Google Scholar 

  7. Baas Becking, L. G. M. Geobiologie of Inleiding tot de Milieukunde (Van Stockum & Zoon, 1934).

    Google Scholar 

  8. Pedrós-Alió, C. Marine microbial diversity: can it be determined? Trends Microbiol. 14, 257–263 (2006).

    Article  Google Scholar 

  9. Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nature Rev. Microbiol. 4, 102–112 (2006). This review combines ideas from microbial ecologists and 'macrobial' ecologists about how to include microorganisms in broader ecological theories and conceptual frameworks.

    Article  CAS  Google Scholar 

  10. Foissner, W. Biogeography and dispersal of micro-organisms: a review emphasizing protists. Acta Protozool. 45, 111–136 (2006).

    Google Scholar 

  11. Ramette, A. & Tiedje, J. M. Biogeography: an emerging cornerstone for understanding prokaryotic diversity, ecology, and evolution. Microb. Ecol. 53, 197–207 (2007).

    Article  Google Scholar 

  12. Fierer, N. in Accessing Uncultivated Microorgansims: From the Environment to Organisms and Genomes and Back (ed. Zengler, K.) 95–115 (ASM Press, 2008).

    Google Scholar 

  13. Fenchel, T. & Finlay, B. J. The ubiquity of small species: patterns of local and global diversity. Bioscience 54, 777–784 (2004).

    Article  Google Scholar 

  14. Green, J. & Bohannan, B. J. Spatial scaling of microbial biodiversity. Trends Ecol. Evol. 21, 501–507 (2006).

    Article  Google Scholar 

  15. Cottrell, M. T. & Kirchman, D. L. Contribution of major bacterial groups to bacterial biomass production (thymidine and leucine incorporation) in the Delaware estuary. Limnol. Oceanogr. 48, 168–178 (2003).

    Article  ADS  Google Scholar 

  16. Malmstrom, R. R., Cottrell, M. T., Elifantz, H. & Kirchman, D. L. Biomass production and assimilation of dissolved organic matter by SAR11 bacteria in the Northwest Atlantic Ocean. Appl. Environ. Microbiol. 71, 2979–2986 (2005).

    Article  CAS  Google Scholar 

  17. Sogin, M. L. et al. Microbial diversity in the deep sea and the underexplored 'rare biosphere'. Proc. Natl Acad. Sci. USA 103, 12115–12120 (2006).

    Article  CAS  ADS  Google Scholar 

  18. Huber, J. A. et al. Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007). This is the second of two papers describing detailed analysis of microbial community structure in marine samples studied by a high-throughput sequencing technique.

    Article  CAS  ADS  Google Scholar 

  19. Pommier, T. et al. Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16, 867–880 (2007).

    Article  CAS  Google Scholar 

  20. Brown, M. V., Schwalbach, M. S., Hewson, I. & Fuhrman, J. A. Coupling 16S-ITS rDNA clone libraries and ARISA to show marine microbial diversity: development and application to a time series. Environ. Microbiol. 7, 1466–1479 (2005).

    Article  CAS  Google Scholar 

  21. Capone, D. G., Zehr, J. P., Paerl, H. W., Bergman, B. & Carpenter, E. J. Trichodesmium, a globally significant marine cyanobacterium. Science 276, 1221–1229 (1997).

    Article  CAS  Google Scholar 

  22. Zehr, J. P. & Ward, B. B. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl. Environ. Microbiol. 68, 1015–1024 (2002).

    Article  CAS  Google Scholar 

  23. Montoya, J. P. et al. High rates of N2 fixation by unicellular diazotrophs in the oligotrophic Pacific Ocean. Nature 430, 1027–1031 (2004).

    Article  CAS  ADS  Google Scholar 

  24. Cohan, F. M. What are bacterial species? Annu. Rev. Microbiol. 56, 457–487 (2002).

    Article  CAS  Google Scholar 

  25. Staley, J. T. Biodiversity: are microbial species threatened? Curr. Opin. Biotechnol. 8, 340–345 (1997).

    Article  CAS  Google Scholar 

  26. Moran, N. A., Munson, M. A., Baumann, P. & Ishikawa, H. A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. Proc. R. Soc. Lond. B 253, 167–171 (1993).

    Article  ADS  Google Scholar 

  27. Degnan, P. H., Lazarus, A. B., Brock, C. D. & Wernegreen, J. J. Host–symbiont stability and fast evolutionary rates in an ant–bacterium association: cospeciation of Camponotus species and their endosymbionts, Candidatus blochmannia . Syst. Biol. 53, 95–110 (2004).

    Article  Google Scholar 

  28. Brown, M. V. & Fuhrman, J. A. Marine bacterial microdiversity as revealed by internal transcribed spacer analysis. Aquat. Microb. Ecol. 41, 15–23 (2005).

    Article  Google Scholar 

  29. Garcia-Martinez, J. & Rodriguez-Valera, F. Microdiversity of uncultured marine prokaryotes: the SAR11 cluster and the marine Archaea of Group I. Mol. Ecol. 9, 935–948 (2000).

    Article  CAS  Google Scholar 

  30. Acinas, S. G. et al. Fine-scale phylogenetic architecture of a complex bacterial community. Nature 430, 551–554 (2004).

    Article  CAS  ADS  Google Scholar 

  31. Prosser, J. I. et al. The role of ecological theory in microbial ecology. Nature Rev. Microbiol. 5, 384–392 (2007). This paper shows why the ongoing molecular revolution in microbial ecology needs to be driven by theory, and that the generality of established ecological theory must be tested using microbial systems.

    Article  CAS  Google Scholar 

  32. Pianka, E. R. Latitudinal gradients in species diversity: a review of concepts. Am. Nat. 100, 33–46 (1966).

    Article  Google Scholar 

  33. Rosenweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  34. Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).

    Article  Google Scholar 

  35. Hillebrand, H. Strength, slope and variability of marine latitudinal gradients. Mar. Ecol. Prog. Ser. 273, 251–267 (2004).

    Article  ADS  Google Scholar 

  36. Fierer, N. & Jackson, R. B. The diversity and biogeography of soil bacterial communities. Proc. Natl Acad. Sci. USA 103, 626–631 (2006).

    Article  CAS  ADS  Google Scholar 

  37. Fuhrman, J. A. et al. A latitudinal diversity gradient in planktonic marine bacteria. Proc. Natl Acad. Sci. USA 105, 7774–7778 (2008).

    Article  CAS  ADS  Google Scholar 

  38. Horner-Devine, M. C., Lage, M., Hughes, J. B. & Bohannan, B. J. A taxa–area relationship for bacteria. Nature 432, 750–753 (2004).

    Article  CAS  ADS  Google Scholar 

  39. Woodcock, S. et al. Taxa–area relationships for microbes: the unsampled and the unseen. Ecol. Lett. 9, 805–812 (2006).

    Article  Google Scholar 

  40. Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Remarkable heterogeneity in meso- and bathypelagic bacterioplankton assemblage composition. Limnol. Oceanogr. 51, 1274–1283 (2006).

    Article  ADS  Google Scholar 

  41. Gotelli, N. J. & Graves, G. R. Null Models in Ecology (Smithsonian Institution Press, 1996).

    Google Scholar 

  42. Gotelli, N. J. & McCabe, D. J. Species co-occurrence: a meta-analysis of J. M. Diamond's assembly rules model. Ecology 83, 2091–2096 (2002).

    Article  Google Scholar 

  43. Woodcock, S. et al. Neutral assembly of bacterial communities. FEMS Microbiol. Ecol. 62, 171–180 (2007).

    Article  CAS  Google Scholar 

  44. Horner-Devine, M. C. et al. A comparison of taxon co-occurrence patterns for macro- and microorganisms. Ecology 88, 1345–1353 (2007).

    Article  Google Scholar 

  45. Ruan, Q. S. et al. Local similarity analysis reveals unique associations among marine bacterioplankton species and environmental factors. Bioinformatics 22, 2532–2538 (2006).

    Article  CAS  Google Scholar 

  46. Fuhrman, J. A. & Steele, J. A. Community structure of marine bacterioplankton: patterns, networks, and relationships to function. Aquat. Microb. Ecol. 53, 69–81 (2008).

    Article  Google Scholar 

  47. Morris, R. M. et al. Temporal and spatial response of bacterioplankton lineages to annual convective overturn at the Bermuda Atlantic Time-series Study site. Limnol. Oceanogr. 50, 1687–1696 (2005).

    Article  MathSciNet  CAS  ADS  Google Scholar 

  48. Montoya, J. M., Pimm, S. L. & Sole, R. V. Ecological networks and their fragility. Nature 442, 259–264 (2006).

    Article  CAS  ADS  Google Scholar 

  49. Long, R. A. & Azam, F. Antagonistic interactions among marine pelagic bacteria. Appl. Environ. Microbiol. 67, 4975–4983 (2001).

    Article  CAS  Google Scholar 

  50. Davidov, Y., Friedjung, A. & Jurkevitch, E. Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-like organisms. Environ. Microbiol. 8, 1667–1673 (2006).

    Article  CAS  Google Scholar 

  51. Fuhrman, J. & Hagström,, Å. in Microbial Ecology of the Oceans (ed. Kirchman, D.) 45–90 (Wiley, 2008).

    Book  Google Scholar 

  52. Not, F., Gausling, R., Azam, F., Heidelberg, J. F. & Worden, A. Z. Vertical distribution of picoeukaryotic diversity in the Sargasso Sea. Environ. Microbiol. 9, 1233–1252 (2007).

    Article  CAS  Google Scholar 

  53. Massana, R. et al. Phylogenetic and ecological analysis of novel marine stramenopiles. Appl. Environ. Microbiol. 70, 3528–3534 (2004).

    Article  CAS  Google Scholar 

  54. Countway, P. D. et al. Distinct protistan assemblages characterize the euphotic zone and deep sea (2500 m) of the western North Atlantic (Sargasso Sea and Gulf Stream). Environ. Microbiol. 9, 1219–1232 (2007).

    Article  CAS  Google Scholar 

  55. Suttle, C. A. Marine viruses — major players in the global ecosystem. Nature Rev. Microbiol. 5, 801–812 (2007).

    Article  CAS  Google Scholar 

  56. Angly, F. E. et al. The marine viromes of four oceanic regions. PLoS Biol. 4, e368 (2006).

    Article  Google Scholar 

  57. Bench, S. R. et al. Metagenomic characterization of Chesapeake bay virioplankton. Appl. Environ. Microbiol. 73, 7629–7641 (2007).

    Article  CAS  Google Scholar 

  58. Achtman, M. & Wagner, M. Microbial diversity and the genetic nature of microbial species. Nature Rev. Microbiol. 6, 431–440 (2008). This paper brings together many viewpoints on the definitions and nature of microbial species.

    Article  CAS  Google Scholar 

  59. Koeppel, A. et al. Identifying the fundamental units of bacterial diversity: a paradigm shift to incorporate ecology into bacterial systematics. Proc. Natl Acad. Sci. USA 105, 2504–2509 (2008).

    Article  CAS  ADS  Google Scholar 

  60. Hunt, D. E. et al. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320, 1081–1085 (2008).

    Article  CAS  ADS  Google Scholar 

  61. Fuhrman, J. A. et al. Annually reoccurring bacterial communities are predictable from ocean conditions. Proc. Natl Acad. Sci. USA 103, 13104–13109 (2006). This paper shows the predictability of marine microbial communities studied over a period of years, implying many features similar to familiar animal and plant systems.

    Article  CAS  ADS  Google Scholar 

  62. Wommack, K. E. & Colwell, R. R. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64, 69–114 (2000).

    Article  CAS  Google Scholar 

  63. Fuhrman, J. A. Marine viruses: biogeochemical and ecological effects. Nature 399, 541–548 (1999).

    Article  CAS  ADS  Google Scholar 

  64. Suttle, C. A. Viruses in the sea. Nature 437, 356–361 (2005).

    Article  CAS  ADS  Google Scholar 

  65. Kettler, G. C. et al. Patterns and implications of gene gain and loss in the evolution of Prochlorococcus . PLoS Genet. 3, 2515–2528 (2007).

    Article  CAS  Google Scholar 

  66. Thingstad, T. F. & Lignell, R. Theoretical models for the control of bacterial growth rate, abundance, diversity and carbon demand. Aquat. Microb. Ecol. 13, 19–27 (1997).

    Article  Google Scholar 

  67. Fuhrman, J. A. & Suttle, C. A. Viruses in marine planktonic systems. Oceanography 6, 51–63 (1993).

    Article  Google Scholar 

  68. Johnson, Z. I. et al. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311, 1737–1740 (2006).

    Article  CAS  ADS  Google Scholar 

  69. Beja, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  CAS  ADS  Google Scholar 

  70. Fuhrman, J. A., Schwalbach, M. S. & Stingl, U. Proteorhodopsins: an array of physiological roles? Nature Rev. Microbiol. 6, 488–494 (2008).

    Article  CAS  Google Scholar 

  71. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  CAS  ADS  Google Scholar 

  72. Hewson, I. & Fuhrman, J. A. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia. Appl. Environ. Microbiol. 70, 3425–3433 (2004).

    Article  CAS  Google Scholar 

  73. Quince, C., Curtis, T. P. & Sloan, W. T. The rational exploration of microbial diversity. ISME J. 2, 997–1006 (2008).

    Article  CAS  Google Scholar 

  74. Rusch, D. B. et al. The Sorcerer II Global Ocean Sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 5, e77 (2007).

    Article  Google Scholar 

  75. Hewson, I., Steele, J. A., Capone, D. G. & Fuhrman, J. A. Temporal and spatial scales of variation in bacterioplankton assemblages of oligotrophic surface waters. Mar. Ecol. Prog. Ser. 311, 67–77 (2006).

    Article  ADS  Google Scholar 

  76. Franklin, M. P. et al. Bacterial diversity in the bacterioneuston (sea surface microlayer): the bacterioneuston through the looking glass. Environ. Microbiol. 7, 723–736 (2005).

    Article  CAS  Google Scholar 

  77. Fuhrman, J. A. in Manual of Environmental Microbiology 3rd edn (eds Hurst, C. J. et al.) Ch. 35 (ASM Press, 2007).

    Google Scholar 

  78. Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 62, 142–160 (2007).

    Article  CAS  Google Scholar 

  79. Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T. J. Abundance-based similarity indices and their estimation when there are unseen species in samples. Biometrics 62, 361–371 (2006).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I thank Å. Hagström, F. Sun, J. Steele, I. Hewson, S. Naeem, J. Green and J. Brown for helping develop ideas presented here, and C. Chow, C. Horner-Devine and J. Cram for comments. Work in my laboratory was supported by the US National Science Foundation Microbial Observatories Program and grants 0527034, 0623575, 0648581, and 0703159, and by the University of Southern California Wrigley Institute for Environmental Studies.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence should be addressed to the author (fuhrman@usc.edu).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuhrman, J. Microbial community structure and its functional implications. Nature 459, 193–199 (2009). https://doi.org/10.1038/nature08058

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08058

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing