Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Non-blinking semiconductor nanocrystals

A Retraction to this article was published on 28 October 2015

Abstract

The photoluminescence from a variety of individual molecules1 and nanometre-sized crystallites2 is defined by large intensity fluctuations, known as ‘blinking’, whereby their photoluminescence turns ‘on’ and ‘off’ intermittently, even under continuous photoexcitation2. For semiconductor nanocrystals, it was originally proposed3 that these ‘off’ periods corresponded to a nanocrystal with an extra charge. A charged nanocrystal could have its photoluminescence temporarily quenched owing to the high efficiency of non-radiative (for example, Auger) recombination processes between the extra charge and a subsequently excited electron–hole pair; photoluminescence would resume only after the nanocrystal becomes neutralized again. Despite over a decade of research, completely non-blinking nanocrystals4,5 have not been synthesized and an understanding of the blinking phenomenon6 remains elusive. Here we report ternary core/shell CdZnSe/ZnSe semiconductor nanocrystals that individually exhibit continuous, non-blinking photoluminescence. Unexpectedly, these nanocrystals strongly photoluminesce despite being charged, as indicated by a multi-peaked photoluminescence spectral shape and short lifetime. To model the unusual photoluminescence properties of the CdZnSe/ZnSe nanocrystals, we softened the abrupt confinement potential of a typical core/shell nanocrystal, suggesting that the structure is a radially graded alloy of CdZnSe into ZnSe. As photoluminescence blinking severely limits the usefulness of nanocrystals in applications requiring a continuous output of single photons, these non-blinking nanocrystals may enable substantial advances in fields ranging from single-molecule biological labelling7 to low-threshold lasers8.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-radiative Auger-like recombination and potential energy functions of nanocrystals.
Figure 2: Single-nanocrystal images and photoluminescence intensity time traces.
Figure 3: Anti-bunching measurements.
Figure 4: Single-nanocrystal photoluminescence spectra and the shake-up process.

Similar content being viewed by others

References

  1. Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999)

    Article  CAS  Google Scholar 

  2. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996)

    Article  CAS  Google Scholar 

  3. Efros, Al. L. & Rosen, M. Random telegraph signal in the photoluminescence intensity of a single quantum dot. Phys. Rev. Lett. 78, 1110–1113 (1997)

    Article  CAS  Google Scholar 

  4. Chen, Y. F. et al. “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130, 5026–5027 (2008)

    Article  CAS  Google Scholar 

  5. Mahler, B. et al. Towards non-blinking colloidal quantum dots. Nature Mater. 7, 659–664 (2008)

    Article  CAS  Google Scholar 

  6. Frantsuzov, P., Kuno, M., Jankó, B. & Marcus, R. A. Universal emission intermittency in quantum dots, nanorods and nanowires. Nature Phys. 4, 519–522 (2008)

    Article  Google Scholar 

  7. Dahan, M. et al. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302, 442–445 (2003)

    Article  CAS  Google Scholar 

  8. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000)

    Article  CAS  Google Scholar 

  9. Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconductor polymer. Nature 370, 354–357 (1994)

    Article  CAS  Google Scholar 

  10. Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001)

    Article  CAS  Google Scholar 

  11. Bruchez, M., Moronne, M., Gin, P., Weiss, S. & Alivisatos, A. P. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998)

    Article  CAS  Google Scholar 

  12. Chan, W. C. W. & Nie, S. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Article  CAS  Google Scholar 

  13. Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005)

    Article  CAS  Google Scholar 

  14. Hartschuh, A., Pedrosa, H. N., Novotny, L. & Krauss, T. D. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301, 1354–1356 (2003)

    Article  CAS  Google Scholar 

  15. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000)

    Article  CAS  Google Scholar 

  16. Kuno, M., Fromm, D. P., Hamann, H. F., Gallagher, A. & Nesbitt, D. J. “On”/“off” fluorescence intermittency of single semiconductor quantum dots. J. Chem. Phys. 115, 1028–1040 (2001)

    Article  CAS  Google Scholar 

  17. Shimizu, K. T. et al. Blinking statistics in single semiconductor nanocrystal quantum dots. Phys. Rev. B 63, 205316 (2001)

    Article  Google Scholar 

  18. Hohng, S. & Ha, T. Near-complete suppression of quantum dot blinking in ambient conditions. J. Am. Chem. Soc. 126, 1324–1325 (2004)

    Article  CAS  Google Scholar 

  19. Fomenko, V. & Nesbitt, D. J. Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression. Nano Lett. 8, 287–293 (2008)

    Article  CAS  Google Scholar 

  20. Talapin, D. V. et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 108, 18826–18831 (2004)

    Article  CAS  Google Scholar 

  21. Zhong, X., Han, M., Dong, Z., White, T. J. & Knoll, W. Composition-tunable ZnxCd1-xSe nanocrystals with high luminescence and stability. J. Am. Chem. Soc. 125, 8589–8594 (2003)

    Article  CAS  Google Scholar 

  22. Crooker, S. A., Hollingsworth, J. A., Tretiak, S. & Klimov, V. I. Spectrally resolved dynamics of energy transfer in quantum-dot assemblies: towards engineered energy flows in artificial materials. Phys. Rev. Lett. 89, 186802 (2002)

    Article  CAS  Google Scholar 

  23. Krauss, T. D. & Brus, L. E. Charge, polarizability, and photoionization of single semiconductor nanocrystals. Phys. Rev. Lett. 83, 4840–4843 (1999)

    Article  CAS  Google Scholar 

  24. Paskov, P. P. et al. Auger processes in InAs self-assembled quantum dots. Physica E 6, 440–443 (2000)

    Article  CAS  Google Scholar 

  25. Hellwege, K. H. Semiconductors. Physics of II–VI and I–VII Compounds, Semimagnetic Semiconductors, Landolt-Börnstein, New Series, Group III, Vol. 17, Pt b (Springer, 1983)

    Google Scholar 

  26. Empedocles, S. A., Norris, D. J. & Bawendi, M. G. Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots. Phys. Rev. Lett. 77, 3873–3876 (1996)

    Article  CAS  Google Scholar 

  27. Yu, Z., Guo, L., Du, H., Krauss, T. D. & Silcox, J. Shell distribution on colloidal CdSe/ZnS quantum dots. Nano Lett. 5, 565–570 (2005)

    Article  CAS  Google Scholar 

  28. Landsberg, P. T. Recombination in Semiconductors (Cambridge Univ. Press, 1991)

    Google Scholar 

  29. Efros, Al. L. et al. Band-edge exciton in quantum dots of semiconductors with a degenerate valence band: dark and bright exciton states. Phys. Rev. B 54, 4843–4856 (1996)

    Article  CAS  Google Scholar 

  30. Dekel, E. et al. Multiexciton spectroscopy of a single self-assembled quantum dot. Phys. Rev. Lett. 80, 4991–4994 (1998)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support by the DOE (DE-FC26-06NT42864), NSF (CHE 0616378, CHE 0619418, EEC-0117770, DMR-9632275), NYSTAR, University of Rochester Center for Electronic Imaging Systems, the Cornell Center for Nanoscale Systems, the Office of Naval Research and the Alexander von Humboldt Foundation (A.L.E.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keith Kahen, Alexander L. Efros or Todd D. Krauss.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Data, Supplementary Figures S-1 - S-4 with Legends, Supplementary Table S-I-S-II and Supplementary References. (PDF 1179 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Ren, X., Kahen, K. et al. Non-blinking semiconductor nanocrystals. Nature 459, 686–689 (2009). https://doi.org/10.1038/nature08072

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08072

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing