Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Pten in stromal fibroblasts suppresses mammary epithelial tumours

Abstract

The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten–Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stromal fibroblast-specific deletion of Pten.
Figure 2: Characterization of ECM deposition and immune cell infiltration.
Figure 3: Ets2 ablation in stromal fibroblasts restricts mammary tumorigenesis.
Figure 4: Loss of Ets2 in stromal fibroblasts diminishes tumour growth in stromal Pten -deleted mammary glands.
Figure 5: Pten-signature is represented in breast cancer stroma.

Similar content being viewed by others

References

  1. Wiseman, B. S. & Werb, Z. Stromal effects on mammary gland development and breast cancer. Science 296, 1046–1049 (2002)

    Article  ADS  CAS  Google Scholar 

  2. Nelson, C. M. & Bissell, M. J. Of extracellular matrix, scaffolds, and signaling: tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22, 287–309 (2006)

    Article  CAS  Google Scholar 

  3. Mueller, M. M. & Fusenig, N. E. Friends or foes – bipolar effects of the tumour stroma in cancer. Nature Rev. Cancer 4, 839–849 (2004)

    Article  CAS  Google Scholar 

  4. Schedin, P. Pregnancy-associated breast cancer and metastasis. Nature Rev. Cancer 6, 281–291 (2006)

    Article  CAS  Google Scholar 

  5. Littlepage, L. E., Egeblad, M. & Werb, Z. Coevolution of cancer and stromal cellular responses. Cancer Cell 7, 499–500 (2005)

    Article  CAS  Google Scholar 

  6. Bhowmick, N. A., Neilson, E. G. & Moses, H. L. Stromal fibroblasts in cancer initiation and progression. Nature 432, 332–337 (2004)

    Article  ADS  CAS  Google Scholar 

  7. Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Rev. Cancer 6, 392–401 (2006)

    Article  CAS  Google Scholar 

  8. Cully, M., You, H., Levine, A. J. & Mak, T. W. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nature Rev. Cancer 6, 184–192 (2006)

    Article  CAS  Google Scholar 

  9. Bergamaschi, A. et al. Extracellular matrix signature identifies breast cancer subgroups with different clinical outcome. J. Pathol. 214, 357–367 (2008)

    Article  CAS  Google Scholar 

  10. Myers, M. P. et al. The lipid phosphatase activity of PTEN is critical for its tumor supressor function. Proc. Natl Acad. Sci. USA 95, 13513–13518 (1998)

    Article  ADS  CAS  Google Scholar 

  11. Stambolic, V. et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95, 29–39 (1998)

    Article  CAS  Google Scholar 

  12. Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403–414 (2008)

    Article  CAS  Google Scholar 

  13. Knobbe, C. B., Lapin, V., Suzuki, A. & Mak, T. W. The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27, 5398–5415 (2008)

    Article  CAS  Google Scholar 

  14. Di Cristofano, A., Pesce, B., Cordon-Cardo, C. & Pandolfi, P. P. Pten is essential for embryonic development and tumour suppression. Nature Genet. 19, 348–355 (1998)

    Article  CAS  Google Scholar 

  15. Trimboli, A. J. et al. Direct evidence for epithelial–mesenchymal transitions in breast cancer. Cancer Res. 68, 937–945 (2008)

    Article  CAS  Google Scholar 

  16. Guy, C. T. et al. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl Acad. Sci. USA 89, 10578–10582 (1992)

    Article  ADS  CAS  Google Scholar 

  17. Cases, S. et al. Development of the mammary gland requires DGAT1 expression in stromal and epithelial tissues. Development 131, 3047–3055 (2004)

    Article  CAS  Google Scholar 

  18. Andrechek, E. R. et al. Amplification of the neu/erbB-2 oncogene in a mouse model of mammary tumorigenesis. Proc. Natl Acad. Sci. USA 97, 3444–3449 (2000)

    Article  ADS  CAS  Google Scholar 

  19. Desai, K. V. et al. Initiating oncogenic event determines gene-expression patterns of human breast cancer models. Proc. Natl Acad. Sci. USA 99, 6967–6972 (2002)

    Article  ADS  CAS  Google Scholar 

  20. Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nature Genet. 34, 267–273 (2003)

    Article  ADS  CAS  Google Scholar 

  21. Dennis, G. et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 4, 3 (2003)

    Article  Google Scholar 

  22. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)

    Article  CAS  Google Scholar 

  23. Weng, L. P., Brown, J. L., Baker, K. M., Ostrowski, M. C. & Eng, C. PTEN blocks insulin-mediated ETS-2 phosphorylation through MAP kinase, independently of the phosphoinositide 3-kinase pathway. Hum. Mol. Genet. 11, 1687–1696 (2002)

    Article  CAS  Google Scholar 

  24. Fowles, L. F. et al. Persistent activation of mitogen-activated protein kinases p42 and p44 and ets-2 phosphorylation in response to colony-stimulating factor 1/c-fms signaling. Mol. Cell. Biol. 18, 5148–5156 (1998)

    Article  CAS  Google Scholar 

  25. McCarthy, S. A. et al. Rapid phosphorylation of Ets-2 accompanies mitogen-activated protein kinase activation and the induction of heparin-binding epidermal growth factor gene expression by oncogenic Raf-1. Mol. Cell. Biol. 17, 2401–2412 (1997)

    Article  CAS  Google Scholar 

  26. Smith, J. L. et al. ets-2 is a target for an akt (Protein kinase B)/jun N-terminal kinase signaling pathway in macrophages of motheaten-viable mutant mice. Mol. Cell. Biol. 20, 8026–8034 (2000)

    Article  CAS  Google Scholar 

  27. Watabe, T. et al. The Ets-1 and Ets-2 transcription factors activate the promoters for invasion-associated urokinase and collagenase genes in response to epidermal growth factor. Int. J. Cancer 77, 128–137 (1998)

    Article  CAS  Google Scholar 

  28. Wei, G. et al. Activated Ets2 is required for persistent inflammatory responses in the motheaten viable model. J. Immunol. 173, 1374–1379 (2004)

    Article  CAS  Google Scholar 

  29. Ludwig, T. Local proteolytic activity in tumor cell invasion and metastasis. Bioessays 27, 1181–1191 (2005)

    Article  CAS  Google Scholar 

  30. Wei, G. et al. Ets1 and Ets2 are required for endothelial cell survival during embryonic angiogenesis. Blood 114, 1123–1130 (2009)

    Article  CAS  Google Scholar 

  31. Lin, E. Y. et al. Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am. J. Pathol. 163, 2113–2126 (2003)

    Article  Google Scholar 

  32. Yamamoto, H. et al. Defective trophoblast function in mice with a targeted mutation of Ets2. Genes Dev. 12, 1315–1326 (1998)

    Article  CAS  Google Scholar 

  33. Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D. & Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681–691 (2005)

    Article  CAS  Google Scholar 

  34. Millauer, B. et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 72, 835–846 (1993)

    Article  CAS  Google Scholar 

  35. Sakurai, Y., Ohgimoto, K., Kataoka, Y., Yoshida, N. & Shibuya, M. Essential role of Flk-1 (VEGF receptor 2) tyrosine residue 1173 in vasculogenesis in mice. Proc. Natl Acad. Sci. USA 102, 1076–1081 (2005)

    Article  ADS  CAS  Google Scholar 

  36. Dakappagari, N. K. et al. Conformational HER-2/neu B-cell epitope peptide vaccine designed to incorporate two native disulfide bonds enhances tumor cell binding and antitumor activities. J. Biol. Chem. 280, 54–63 (2005)

    Article  CAS  Google Scholar 

  37. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nature Med. 14, 518–527 (2008)

    Article  CAS  Google Scholar 

  38. Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell 12, 395–402 (2007)

    Article  CAS  Google Scholar 

  39. Saal, L. H. et al. Recurrent gross mutations of the PTEN tumor suppressor gene in breast cancers with deficient DSB repair. Nature Genet. 40, 102–107 (2008)

    Article  CAS  Google Scholar 

  40. Saal, L. H. et al. Poor prognosis in carcinoma is associated with a gene expression signature of aberrant PTEN tumor suppressor pathway activity. Proc. Natl Acad. Sci. USA 104, 7564–7569 (2007)

    Article  ADS  CAS  Google Scholar 

  41. Tynan, J. A., Wen, F., Muller, W. J. & Oshima, R. G. Ets2-dependent microenvironmental support of mouse mammary tumors. Oncogene 24, 6870–6876 (2005)

    Article  CAS  Google Scholar 

  42. Buggy, Y. et al. Ets2 transcription factor in normal and neoplastic human breast tissue. Eur. J. Cancer 42, 485–491 (2006)

    Article  CAS  Google Scholar 

  43. Park, E. S. et al. Heterologous tissue culture expression signature predicts human breast cancer prognosis. PLoS One 2, e145 (2007)

    Article  ADS  Google Scholar 

  44. Svensson, S. et al. ERK phosphorylation is linked to VEGFR2 expression and Ets-2 phosphorylation in breast cancer and is associated with tamoxifen treatment resistance and small tumours with good prognosis. Oncogene 24, 4370–4379 (2005)

    Article  CAS  Google Scholar 

  45. Pap, T. et al. Activation of synovial fibroblasts in rheumatoid arthritis: lack of Expression of the tumour suppressor PTEN at sites of invasive growth and destruction. Arthritis Res. 2, 59–64 (2000)

    Article  CAS  Google Scholar 

  46. White, E. S. et al. Negative regulation of myofibroblast differentiation by PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am. J. Respir. Crit. Care Med. 173, 112–121 (2006)

    Article  CAS  Google Scholar 

  47. Gibson, G. E. & Huang, H. M. Oxidative processes in the brain and non-neuronal tissues as biomarkers of Alzheimer’s disease. Front. Biosci. 7, d1007–d1015 (2002)

    CAS  PubMed  Google Scholar 

  48. Allred, D. C., Harvey, J. M., Berardo, M. & Clark, G. M. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod. Pathol. 11, 155–168 (1998)

    CAS  PubMed  Google Scholar 

  49. Soule, H. D. & McGrath, C. M. A simplified method for passage and long-term growth of human mammary epithelial cells. In Vitro Cell. Dev. Biol. 22, 6–12 (1986)

    Article  CAS  Google Scholar 

  50. Soriano, P. Generalized lacZ expression with the ROSA26 Cre reporter strain. Nature Genet. 21, 70–71 (1999)

    Article  CAS  Google Scholar 

  51. Mook, O. R., Van Overbeek, C., Ackema, E. G., Van Maldegem, F. & Frederiks, W. M. In situ localization of gelatinolytic activity in the extracellular matrix of metastases of colon cancer in rat liver using quenched fluorogenic DQ-gelatin. J. Histochem. Cytochem. 51, 821–829 (2003)

    Article  CAS  Google Scholar 

  52. Auer, H. et al. Gene-resolution analysis of DNA copy number variation using oligonucleotide expression microarrays. BMC Genomics 8, 111 (2007)

    Article  Google Scholar 

  53. Hu, R. et al. Eos, MITF, and PU.1 recruit corepressors to osteoclast-specific genes in committed myeloid progenitors. Mol. Cell. Biol. 27, 4018–4027 (2007)

    Article  CAS  Google Scholar 

  54. Westall, P. H. & Young, S. S. Resampling-Based Multiple Testing: Examples and Methods for p-Value Adjustment (John Wiley, 1993)

    Google Scholar 

Download references

Acknowledgements

We thank M. Rawahneh and J. Moffitt for histotechnical assistance, K. Kornacker, S. Cory and I. Vasudeva Murthy for bioinformatics assistance, P. Gulati for statistics assistance, the Ohio State University Human Tissue Resource Network and the Ohio State University Comprehensive Cancer Center Microarray, Nucleic Acids, Trangenics and Flow Cytometry Shared Facilities for technical assistance. MMTV-ErbB2 mice were provided by W. Muller. This work was funded by the National Institutes of Health to G.L. (R01CA85619, R01HD47470, P01CA097189) and to M.C.O. (R01CA053271, P01CA097189), by the Komen Breast Cancer Foundation and Evelyn Simmers Charitable Trust to M.C.O., by the Terry Fox New Frontiers Group Grant to M.P., and by the Natural Science and Engineering Research Council of Canada Discovery Grants Program grant to M.H. F.L. and F.P. were funded by Department of Defense Pre-doctoral Fellowships and J.-L.C. was funded by a Department of Defense Postdoctoral Fellowship. G.L. is the recipient of the Pew Charitable Trusts Scholar Award and the Leukemia and Lymphoma Society Scholar Award. M.P. holds the Diane and Sal Guerrera Chair in Cancer Genetics at McGill University.

Author Contributions G.L. and M.C.O. designed and supervised this study, analysed data, and helped write and edit the manuscript. A.J.T., C.Z.C., F.L. and J.A.W. designed and performed experiments, collected and analysed data, and co-wrote the paper. N.C., J.C.T., H.W., J-L.C., S.M.S. and M.N.G. technically assisted with experiments, and collected and analysed data. G.W., A.J.T., M.L.R and M.W performed experiments in initial stages of the project, particularly in designing and characterizing the mouse models. S.N., P.S. and T.J.R. contributed to the histopathological analysis of the mouse mammary tumour models and writing the manuscript. S.H.B. and L.Y. contributed to the histopathological analysis of human samples and writing the manuscript. S.A.F. and J.A.S. contributed to the statistical analyses of data and writing the manuscript. A.M., F.P., J.A.W., E.C., M.H. and M.P. contributed to the analysis and comparison of mouse and human microarray data and writing the mansucript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael C. Ostrowski or Gustavo Leone.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-13 with Legends, Supplementary Tables 1-3 and Supplementary References. (PDF 2289 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trimboli, A., Cantemir-Stone, C., Li, F. et al. Pten in stromal fibroblasts suppresses mammary epithelial tumours. Nature 461, 1084–1091 (2009). https://doi.org/10.1038/nature08486

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08486

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing