Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells

Abstract

The pluripotent state, which is first established in the primitive ectoderm cells of blastocysts, is lost progressively and irreversibly during subsequent development1. For example, development of post-implantation epiblast cells from primitive ectoderm involves significant transcriptional and epigenetic changes, including DNA methylation and X chromosome inactivation2, which create a robust epigenetic barrier and prevent their reversion to a primitive-ectoderm-like state. Epiblast cells are refractory to leukaemia inhibitory factor (LIF)–STAT3 signalling, but they respond to activin/basic fibroblast growth factor to form self-renewing epiblast stem cells (EpiSCs), which exhibit essential properties of epiblast cells3,4 and that differ from embryonic stem (ES) cells derived from primitive ectoderm5. Here we show reprogramming of advanced epiblast cells from embryonic day 5.5–7.5 mouse embryos with uniform expression of N-cadherin and inactive X chromosome to ES-cell-like cells (rESCs) in response to LIF–STAT3 signalling. Cultured epiblast cells overcome the epigenetic barrier progressively as they proceed with the erasure of key properties of epiblast cells, resulting in DNA demethylation, X reactivation and expression of E-cadherin. The accompanying changes in the transcriptome result in a loss of phenotypic and epigenetic memory of epiblast cells. Using this approach, we report reversion of established EpiSCs to rESCs. Moreover, unlike epiblast and EpiSCs, rESCs contribute to somatic tissues and germ cells in chimaeras. Further studies may reveal how signalling-induced epigenetic reprogramming may promote reacquisition of pluripotency.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Reprogramming epiblast cells from mouse E6.5 embryos to generate rESCs.
Figure 2: Changes in gene expression profile.
Figure 3: Epigenetic changes during reprogramming of epiblast cells.
Figure 4: Dynamic changes of cell surface markers and model of reprogramming.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Gardner, R. L. & Rossant, J. Investigation of the fate of 4–5 day post-coitum mouse inner cell mass cells by blastocyst injection. J. Embryol. Exp. Morphol. 52, 141–152 (1979)

    CAS  PubMed  Google Scholar 

  2. Surani, M. A., Hayashi, K. & Hajkova, P. Genetic and epigenetic regulators of pluripotency. Cell 128, 747–762 (2007)

    Article  CAS  PubMed  Google Scholar 

  3. Tesar, P. J. et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448, 196–199 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  4. Brons, I. G. et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195 (2007)

    Article  CAS  ADS  PubMed  Google Scholar 

  5. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)

    Article  CAS  ADS  PubMed  Google Scholar 

  6. Yeom, Y. I. et al. Germline regulatory element of Oct-4 specific for the totipotent cycle of embryonal cells. Development 122, 881–894 (1996)

    CAS  PubMed  Google Scholar 

  7. Chen, X. et al. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133, 1106–1117 (2008)

    Article  CAS  PubMed  Google Scholar 

  8. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006)

    Article  CAS  PubMed  Google Scholar 

  9. Niwa, H. How is pluripotency determined and maintained? Development 134, 635–646 (2007)

    Article  CAS  PubMed  Google Scholar 

  10. Rathjen, J., Washington, J. M., Bettess, M. D. & Rathjen, P. D. Identification of a biological activity that supports maintenance and proliferation of pluripotent cells from the primitive ectoderm of the mouse. Biol. Reprod. 69, 1863–1871 (2003)

    Article  CAS  PubMed  Google Scholar 

  11. Chou, Y. F. et al. The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell 135, 449–461 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takagi, N., Sugawara, O. & Sasaki, M. Regional and temporal changes in the pattern of X-chromosome replication during the early post-implantation development of the female mouse. Chromosoma 85, 275–286 (1982)

    Article  CAS  PubMed  Google Scholar 

  13. Silva, J. et al. Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. Dev. Cell 4, 481–495 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. Chuva de Sousa Lopes, S. M. et al. X chromosome activity in mouse XX primordial germ cells. PLoS Genet. 4, e30 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  15. Plath, K. et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 300, 131–135 (2003)

    Article  CAS  ADS  PubMed  Google Scholar 

  16. Mikkelsen, T. S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Tada, M., Takahama, Y., Abe, K., Nakatsuji, N. & Tada, T. Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr. Biol. 11, 1553–1558 (2001)

    Article  CAS  PubMed  Google Scholar 

  19. Bao, S. et al. Initiation of epigenetic reprogramming of the X chromosome in somatic nuclei transplanted to a mouse oocyte. EMBO Rep. 6, 748–754 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008)

    Article  CAS  PubMed  Google Scholar 

  21. Ohinata, Y. et al. A signaling principle for the specification of the germ cell lineage in mice. Cell 137, 571–584 (2009)

    Article  CAS  PubMed  Google Scholar 

  22. Shovlin, T. C., Durcova-Hills, G., Surani, A. & McLaren, A. Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev. Biol. 313, 674–681 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Meissner, A. et al. Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454, 766–770 (2008)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  24. Guo, G. et al. Klf4 reverts developmentally programmed restriction of ground state pluripotency. Development 136, 1063–1069 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hanna, J. et al. Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4, 513–524 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Thomson, J. A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998)

    Article  CAS  ADS  PubMed  Google Scholar 

  27. Silva, J. et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nature Biotechnol. 26, 916–924 (2008)

    Article  CAS  Google Scholar 

  29. Hayashi, K. & Surani, M. A. Resetting the epigenome beyond pluripotency in the germline. Cell Stem Cell 4, 493–498 (2009)

    Article  CAS  PubMed  Google Scholar 

  30. Surani, M. A., Durcova-Hills, G., Hajkova, P., Hayashi, K. & Tee, W. W. Germ line, stem cells, and epigenetic reprogramming. Cold Spring Harb. Symp. Quant. Biol. 73, 9–15 (2008)

    Article  CAS  PubMed  Google Scholar 

  31. Hayashi, K. & Surani, M. A. Self-renewing epiblast stem cells exhibit continual delineation of germ cells with epigenetic reprogramming in vitro. Development 136, 3549–3556 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Lee for assistance. This work was supported by grants from the Wellcome Trust to M.A.S.

Author Contributions S.B., F.T., X.L. and M.A.S. designed the research project; S.B. and F.T. performed most of the experiments, with contributions from X.L., K.H. and A.G.; microarray analysis was performed by K.L.; S.B., F.T., K.H., A.G. and M.A.S carried out critical assessment of the data; M.A.S. wrote the paper with input from all the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azim Surani.

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Figures 1-7 with legends, Supplementary Tables 1-6 with legends and Supplementary References. (PDF 3175 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bao, S., Tang, F., Li, X. et al. Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells . Nature 461, 1292–1295 (2009). https://doi.org/10.1038/nature08534

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08534

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing