Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coronary arteries form by developmental reprogramming of venous cells

Abstract

Coronary artery disease is the leading cause of death worldwide. Determining the coronary artery developmental program could aid understanding of the disease and lead to new treatments, but many aspects of the process, including their developmental origin, remain obscure. Here we show, using histological and clonal analysis in mice and cardiac organ culture, that coronary vessels arise from angiogenic sprouts of the sinus venosus—the vein that returns blood to the embryonic heart. Sprouting venous endothelial cells dedifferentiate as they migrate over and invade the myocardium. Invading cells differentiate into arteries and capillaries; cells on the surface redifferentiate into veins. These results show that some differentiated venous cells retain developmental plasticity, and indicate that position-specific cardiac signals trigger their dedifferentiation and conversion into coronary arteries, capillaries and veins. Understanding this new reprogramming process and identifying the endogenous signals should suggest more natural ways of engineering coronary bypass grafts and revascularizing the heart.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Coronary vessels sprout from the sinus venosus.
Figure 2: Analysis of coronary vessel sprouting in vitro.
Figure 3: Clonal analysis of coronary artery development.
Figure 4: Downregulation of venous markers and induction of arterial markers during coronary artery development.

Similar content being viewed by others

References

  1. Folkman, J. & Haudenschild, C. Angiogenesis in vitro . Nature 288, 551–556 (1980)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Leung, D. W., Cachianes, G., Kuang, W. J., Goeddel, D. V. & Ferrara, N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246, 1306–1309 (1989)

    ADS  CAS  PubMed  Google Scholar 

  3. Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 438, 932–936 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Adams, R. H. & Alitalo, K. Molecular regulation of angiogenesis and lymphangiogenesis. Nature Rev. Mol. Cell Biol. 8, 464–478 (2007)

    Article  CAS  Google Scholar 

  5. Ferrara, N. & Kerbel, R. S. Angiogenesis as a therapeutic target. Nature 438, 967–974 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Folkman, J. Angiogenesis. Annu. Rev. Med. 57, 1–18 (2006)

    Article  CAS  PubMed  Google Scholar 

  7. Majesky, M. W. Development of coronary vessels. Curr. Top. Dev. Biol. 62, 225–259 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. Lavine, K. J. & Ornitz, D. M. Shared circuitry: developmental signaling cascades regulate both embryonic and adult coronary vasculature. Circ. Res. 104, 159–169 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Smart, N., Dube, K. N. & Riley, P. R. Coronary vessel development and insight towards neovascular therapy. Int. J. Exp. Pathol. 90, 262–283 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. World Health Organization. The Global Burden Of Disease: 2004 Updatehttp://www.who.int/healthinfo/global_burden_disease/2004_report_update/en/index.html〉.

  11. Lewis, F. T. The question of sinusoids. Anat. Anz. 25, 261–279 (1904)

    Google Scholar 

  12. Grant, R. T. Development of the cardiac coronary vessels in the rabbit. Heart 13, 261–271 (1923)

    Google Scholar 

  13. Bennett, H. S. The development of the blood supply to the heart in the embryo pig. Am. J. Anat. 60, 27–53 (1936)

    Article  Google Scholar 

  14. Hutchins, G. M., Kessler-Hanna, A. & Moore, G. W. Development of the coronary arteries in the embryonic human heart. Circulation 77, 1250–1257 (1988)

    Article  CAS  PubMed  Google Scholar 

  15. Mikawa, T. & Gourdie, R. G. Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Dev. Biol. 174, 221–232 (1996)

    Article  CAS  PubMed  Google Scholar 

  16. Männer, J. Does the subepicardial mesenchyme contribute myocardioblasts to the myocardium of the chick embryo heart? A quail-chick chimera study tracing the fate of the epicardial primordium. Anat. Rec. 255, 212–226 (1999)

    Article  PubMed  Google Scholar 

  17. Pérez-Pomares, J. M. et al. Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. Int. J. Dev. Biol. 46, 1005–1013 (2002)

    PubMed  Google Scholar 

  18. Kirby, M. L. Cardiac Development (Oxford Univ. Press, 2007)

    Google Scholar 

  19. Poelmann, R. E., Gittenberger-de Groot, A. C., Mentink, M. M., Bokenkamp, R. & Hogers, B. Development of the cardiac coronary vascular endothelium, studied with antiendothelial antibodies, in chicken-quail chimeras. Circ. Res. 73, 559–568 (1993)

    Article  CAS  PubMed  Google Scholar 

  20. Merki, E. et al. Epicardial retinoid X receptor α is required for myocardial growth and coronary artery formation. Proc. Natl Acad. Sci. USA 102, 18455–18460 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. & Bader, D. M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. Development 132, 5317–5328 (2005)

    Article  CAS  PubMed  Google Scholar 

  22. Cai, C. L. et al. A myocardial lineage derives from Tbx18 epicardial cells. Nature 454, 104–108 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhou, B. et al. Epicardial progenitors contribute to the cardiomyocyte lineage in the developing heart. Nature 454, 109–113 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sheikh, A. Y. et al. In vivo genetic profiling and cellular localization of apelin reveals a hypoxia-sensitive, endothelial-centered pathway activated in ischemic heart failure. Am. J. Physiol. Heart Circ. Physiol. 294, H88–H98 (2008)

    Article  CAS  PubMed  Google Scholar 

  25. Kattan, J., Dettman, R. W. & Bristow, J. Formation and remodeling of the coronary vascular bed in the embryonic avian heart. Dev. Dyn. 230, 34–43 (2004)

    Article  PubMed  Google Scholar 

  26. Lavine, K. J. et al. Fibroblast growth factor signals regulate a wave of Hedgehog activation that is essential for coronary vascular development. Genes Dev. 20, 1651–1666 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hiruma, T. & Hirakow, R. Epicardial formation in embryonic chick heart: computer-aided reconstruction, scanning, and transmission electron microscopic studies. Am. J. Anat. 184, 129–138 (1989)

    Article  CAS  PubMed  Google Scholar 

  28. Hellström, M. et al. Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445, 776–780 (2007)

    Article  ADS  PubMed  Google Scholar 

  29. Kidoya, H. et al. Spatial and temporal role of the apelin/APJ system in the caliber size regulation of blood vessels during angiogenesis. EMBO J. 27, 522–534 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tammela, T. et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454, 656–660 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Suchting, S. et al. The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc. Natl Acad. Sci. USA 104, 3225–3230 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Drake, C. J. & Fleming, P. A. Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood 95, 1671–1679 (2000)

    CAS  PubMed  Google Scholar 

  33. Monvoisin, A. et al. VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev. Dyn. 235, 3413–3422 (2006)

    Article  CAS  PubMed  Google Scholar 

  34. Livet, J. et al. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56–62 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Lavine, K. J., Long, F., Choi, K., Smith, C. & Ornitz, D. M. Hedgehog signaling to distinct cell types differentially regulates coronary artery and vein development. Development 135, 3161–3171 (2008)

    Article  CAS  PubMed  Google Scholar 

  36. Swift, M. R. & Weinstein, B. M. Arterial-venous specification during development. Circ. Res. 104, 576–588 (2009)

    Article  CAS  PubMed  Google Scholar 

  37. le Noble, F. et al. Flow regulates arterial-venous differentiation in the chick embryo yolk sac. Development 131, 361–375 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. Moyon, D., Pardanaud, L., Yuan, L., Breant, C. & Eichmann, A. Plasticity of endothelial cells during arterial-venous differentiation in the avian embryo. Development 128, 3359–3370 (2001)

    CAS  PubMed  Google Scholar 

  39. Othman-Hassan, K. et al. Arterial identity of endothelial cells is controlled by local cues. Dev. Biol. 237, 398–409 (2001)

    Article  CAS  PubMed  Google Scholar 

  40. Kudo, F. A. et al. Venous identity is lost but arterial identity is not gained during vein graft adaptation. Arterioscler. Thromb. Vasc. Biol. 27, 1562–1571 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. Goldman, S. et al. Long-term patency of saphenous vein and left internal mammary artery grafts after coronary artery bypass surgery: results from a Department of Veterans Affairs Cooperative Study. J. Am. Coll. Cardiol. 44, 2149–2156 (2004)

    Article  PubMed  Google Scholar 

  42. Sabik, J. F., Lytle, B. W., Blackstone, E. H., Houghtaling, P. L. & Cosgrove, D. M. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann. Thorac. Surg. 79, 544–551,discussion 544–551 (2005)

    Article  PubMed  Google Scholar 

  43. Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme of mouse lung development. Nature 453, 745–750 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayashi, S. & McMahon, A. P. Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev. Biol. 244, 305–318 (2002)

    Article  CAS  PubMed  Google Scholar 

  45. Zovein, A. C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Quertermous, L. Iruela-Arispe and S. M. Evans for mouse strains, Krasnow laboratory members for input and comments, especially M. Kumar for guidance on clonal analysis, and C. Breitweiser and M. Petersen for help preparing figures. K.R.-H. was supported by the National Institutes of Health under Ruth L. Kirschstein National Research Service Award (2T32HD007249). M.A.K. is an investigator of the Howard Hughes Medical Institute.

Author Contributions K.R.-H. designed and performed all experiments. K.R.-H. and M.A.K. analysed the experiments and wrote the manuscript. H.U. and I.L.W. provided the multicolour reporter mice and advised on its use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Krasnow.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures S1-10 with legends and Supplementary Table S1. (PDF 25390 kb)

Supplementary Movie 1

This file contains a timelapse video (10 frames/sec) of intact heart cultured for 72 hours. (MOV 2994 kb)

Supplementary Movie 2

This file contains a timelapse video (10 frames/sec) of dissected ventricle cultured for 72 hours. (MOV 550 kb)

Supplementary Movie 3

This file contains a timelapse video (10 frames/sec) of dissected atria cultured for 72 hours. (MOV 248 kb)

Supplementary Movie 4

This file contains a timelapse video (10 frames/sec) of recombined heart cultured for 72 hours. (MOV 2145 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Red-Horse, K., Ueno, H., Weissman, I. et al. Coronary arteries form by developmental reprogramming of venous cells. Nature 464, 549–553 (2010). https://doi.org/10.1038/nature08873

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08873

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing