Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The architecture of respiratory complex I

Abstract

Complex I is the first enzyme of the respiratory chain and has a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation by an unknown mechanism. Dysfunction of complex I has been implicated in many human neurodegenerative diseases. We have determined the structure of its hydrophilic domain previously. Here, we report the α-helical structure of the membrane domain of complex I from Escherichia coli at 3.9 Å resolution. The antiporter-like subunits NuoL/M/N each contain 14 conserved transmembrane (TM) helices. Two of them are discontinuous, as in some transporters. Unexpectedly, subunit NuoL also contains a 110-Å long amphipathic α-helix, spanning almost the entire length of the domain. Furthermore, we have determined the structure of the entire complex I from Thermus thermophilus at 4.5 Å resolution. The L-shaped assembly consists of the α-helical model for the membrane domain, with 63 TM helices, and the known structure of the hydrophilic domain. The architecture of the complex provides strong clues about the coupling mechanism: the conformational changes at the interface of the two main domains may drive the long amphipathic α-helix of NuoL in a piston-like motion, tilting nearby discontinuous TM helices, resulting in proton translocation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The α-helical model of the membrane domain of E. coli complex I.
Figure 2: Structural alignment of the antiporter-like subunits NuoL, NuoM and NuoN of E. coli complex I.
Figure 3: The structure of the entire complex I from T. thermophilus.
Figure 4: Proposed model of proton translocation by complex I.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and structure factors have been deposited in the RCSB Protein Data Bank under accession codes 3M9C (membrane domain of complex I from E. coli) and 3M9S (intact complex I from T. thermophilus).

References

  1. Walker, J. E. The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q. Rev. Biophys. 25, 253–324 (1992)

    Article  CAS  PubMed  Google Scholar 

  2. Yagi, T. & Matsuno-Yagi, A. The proton-translocating NADH-quinone oxidoreductase in the respiratory chain: the secret unlocked. Biochemistry 42, 2266–2274 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu. Rev. Biochem. 75, 69–92 (2006)

    Article  CAS  PubMed  Google Scholar 

  4. Ohnishi, T. Iron-sulfur clusters/semiquinones in complex I. Biochim. Biophys. Acta 1364, 186–206 (1998)

    Article  CAS  PubMed  Google Scholar 

  5. Sazanov, L. A. Respiratory complex I: mechanistic and structural insights provided by the crystal structure of the hydrophilic domain. Biochemistry 46, 2275–2288 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Schapira, A. H. Human complex I defects in neurodegenerative diseases. Biochim. Biophys. Acta 1364, 261–270 (1998)

    Article  CAS  PubMed  Google Scholar 

  7. Dawson, T. M. & Dawson, V. L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302, 819–822 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Balaban, R. S., Nemoto, S. & Finkel, T. Mitochondria, oxidants, and aging. Cell 120, 483–495 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Carroll, J. et al. Bovine complex I is a complex of 45 different subunits. J. Biol. Chem. 281, 32724–32727 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Clason, T. et al. The structure of eukaryotic and prokaryotic complex I. J. Struct. Biol. 169, 81–88 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Morgan, D. J. & Sazanov, L. A. Three-dimensional structure of respiratory complex I from Escherichia coli in ice in the presence of nucleotides. Biochim. Biophys. Acta 1777, 711–718 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Sazanov, L. A. & Hinchliffe, P. Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus . Science 311, 1430–1436 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Berrisford, J. M. & Sazanov, L. A. Structural basis for the mechanism of respiratory complex I. J. Biol. Chem. 284, 29773–29783 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fearnley, I. M. & Walker, J. E. Conservation of sequences of subunits of mitochondrial complex I and their relationships with other proteins. Biochim. Biophys. Acta 1140, 105–134 (1992)

    Article  CAS  PubMed  Google Scholar 

  15. Mathiesen, C. & Hagerhall, C. Transmembrane topology of the NuoL, M and N subunits of NADH:quinone oxidoreductase and their homologues among membrane-bound hydrogenases and bona fide antiporters. Biochim. Biophys. Acta 1556, 121–132 (2002)

    Article  CAS  PubMed  Google Scholar 

  16. Friedrich, T. Complex I: a chimaera of a redox and conformation-driven proton pump? J. Bioenerg. Biomembr. 33, 169–177 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Sazanov, L. A., Carroll, J., Holt, P., Toime, L. & Fearnley, I. M. A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 278, 19483–19491 (2003)

    Article  CAS  PubMed  Google Scholar 

  18. Guénebaut, V., Schlitt, A., Weiss, H., Leonard, K. & Friedrich, T. Consistent structure between bacterial and mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Mol. Biol. 276, 105–112 (1998)

    Article  PubMed  Google Scholar 

  19. Baranova, E. A., Holt, P. J. & Sazanov, L. A. Projection structure of the membrane domain of Escherichia coli respiratory complex I at 8 Å resolution. J. Mol. Biol. 366, 140–154 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Kao, M. C., Di Bernardo, S., Matsuno-Yagi, A. & Yagi, T. Characterization of the membrane domain Nqo11 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans . Biochemistry 41, 4377–4384 (2002)

    Article  CAS  PubMed  Google Scholar 

  21. Kao, M. C., Di Bernardo, S., Matsuno-Yagi, A. & Yagi, T. Characterization and topology of the membrane domain Nqo10 subunit of the proton-translocating NADH-quinone oxidoreductase of Paracoccus denitrificans . Biochemistry 42, 4534–4543 (2003)

    Article  CAS  PubMed  Google Scholar 

  22. Bernardo, S. D., Yano, T. & Yagi, T. Exploring the membrane domain of the reduced nicotinamide adenine dinucleotide-quinone oxidoreductase of Paracoccus denitrificans: characterization of the NQO7 subunit. Biochemistry 39, 9411–9418 (2000)

    Article  CAS  PubMed  Google Scholar 

  23. Mamedova, A. A., Holt, P. J., Carroll, J. & Sazanov, L. A. Substrate-induced conformational change in bacterial complex I. J. Biol. Chem. 279, 23830–23836 (2004)

    Article  CAS  PubMed  Google Scholar 

  24. Screpanti, E. & Hunte, C. Discontinuous membrane helices in transport proteins and their correlation with function. J. Struct. Biol. 159, 261–267 (2007)

    Article  CAS  PubMed  Google Scholar 

  25. Torres-Bacete, J., Sinha, P. K., Castro-Guerrero, N., Matsuno-Yagi, A. & Yagi, T. Features of subunit NuoM (ND4) in Escherichia coli NDH-1: topology and implication of conserved Glu144 for coupling site 1. J. Biol. Chem. 284, 33062–33069 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Holt, P. J., Morgan, D. J. & Sazanov, L. A. The location of NuoL and NuoM subunits in the membrane domain of the Escherichia coli complex I: implications for the mechanism of proton pumping. J. Biol. Chem. 278, 43114–43120 (2003)

    Article  CAS  PubMed  Google Scholar 

  27. Baranova, E. A., Morgan, D. J. & Sazanov, L. A. Single particle analysis confirms distal location of subunits NuoL and NuoM in Escherichia coli complex I. J. Struct. Biol. 159, 238–242 (2007)

    Article  CAS  PubMed  Google Scholar 

  28. Kao, M. C., Nakamaru-Ogiso, E., Matsuno-Yagi, A. & Yagi, T. Characterization of the membrane domain subunit NuoK (ND4L) of the NADH-quinone oxidoreductase from Escherichia coli . Biochemistry 44, 9545–9554 (2005)

    Article  CAS  PubMed  Google Scholar 

  29. Roth, R. & Hagerhall, C. Transmembrane orientation and topology of the NADH:quinone oxidoreductase putative quinone binding subunit NuoH. Biochim. Biophys. Acta 1504, 352–362 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Kao, M. C., Matsuno-Yagi, A. & Yagi, T. Subunit proximity in the H+-translocating NADH-quinone oxidoreductase probed by zero-length cross-linking. Biochemistry 43, 3750–3755 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Murai, M., Sekiguchi, K., Nishioka, T. & Miyoshi, H. Characterization of the inhibitor binding site in mitochondrial NADH-ubiquinone oxidoreductase by photoaffinity labeling using a quinazoline-type inhibitor. Biochemistry 48, 688–698 (2009)

    Article  CAS  PubMed  Google Scholar 

  32. Sekiguchi, K., Murai, M. & Miyoshi, H. Exploring the binding site of acetogenin in the ND1 subunit of bovine mitochondrial complex I. Biochim. Biophys. Acta 1787, 1106–1111 (2009)

    Article  CAS  PubMed  Google Scholar 

  33. Page, C. C., Moser, C. C., Chen, X. & Dutton, P. L. Natural engineering principles of electron tunnelling in biological oxidation–reduction. Nature 402, 47–52 (1999)

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Yano, T., Dunham, W. R. & Ohnishi, T. Characterization of the ΔμH+-sensitive ubisemiquinone species (SQNf) and the interaction with cluster N2: new insight into the energy-coupled electron transfer in complex I. Biochemistry 44, 1744–1754 (2005)

    Article  CAS  PubMed  Google Scholar 

  35. Nakamaru-Ogiso, E., Sakamoto, K., Matsuno-Yagi, A., Miyoshi, H. & Yagi, T. The ND5 subunit was labeled by a photoaffinity analogue of fenpyroximate in bovine mitochondrial complex I. Biochemistry 42, 746–754 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Gong, X. et al. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli . J. Biol. Chem. 278, 25731–25737 (2003)

    Article  CAS  PubMed  Google Scholar 

  37. Berrisford, J. M., Thompson, C. J. & Sazanov, L. A. Chemical and NADH-induced, ROS-dependent, cross-linking between subunits of complex I from Escherichia coli and Thermus thermophilus . Biochemistry 47, 10262–10270 (2008)

    Article  CAS  PubMed  Google Scholar 

  38. Belogrudov, G. & Hatefi, Y. Catalytic sector of complex I (NADH:ubiquinone oxidoreductase): subunit stoichiometry and substrate-induced conformation changes. Biochemistry 33, 4571–4576 (1994)

    Article  CAS  PubMed  Google Scholar 

  39. Gondal, J. A. & Anderson, W. M. The molecular morphology of bovine heart mitochondrial NADH-ubiquinone reductase. Native disulfide-linked subunits and rotenone-induced conformational changes. J. Biol. Chem. 260, 12690–12694 (1985)

    CAS  PubMed  Google Scholar 

  40. Verkhovskaya, M. L., Belevich, N., Euro, L., Wikstrom, M. & Verkhovsky, M. I. Real-time electron transfer in respiratory complex I. Proc. Natl Acad. Sci. USA 105, 3763–3767 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Euro, L., Belevich, G., Verkhovsky, M. I., Wikstrom, M. & Verkhovskaya, M. Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochim. Biophys. Acta 1777, 1166–1172 (2008)

    Article  CAS  PubMed  Google Scholar 

  42. Torres-Bacete, J., Nakamaru-Ogiso, E., Matsuno-Yagi, A. & Yagi, T. Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J. Biol. Chem. 282, 36914–36922 (2007)

    Article  CAS  PubMed  Google Scholar 

  43. Kervinen, M., Patsi, J., Finel, M. & Hassinen, I. E. A pair of membrane-embedded acidic residues in the NuoK subunit of Escherichia coli NDH-1, a counterpart of the ND4L subunit of the mitochondrial complex I, are required for high ubiquinone reductase activity. Biochemistry 43, 773–781 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. Kajiyama, Y., Otagiri, M., Sekiguchi, J., Kudo, T. & Kosono, S. The MrpA, MrpB and MrpD subunits of the Mrp antiporter complex in Bacillus subtilis contain membrane-embedded and essential acidic residues. Microbiology 155, 2137–2147 (2009)

    Article  CAS  PubMed  Google Scholar 

  45. Sazanov, L. A., Carroll, J., Holt, P., Toime, L. & Fearnley, I. M. A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (Complex I). J. Biol. Chem. 278, 19483–19491 (2003)

    Article  CAS  PubMed  Google Scholar 

  46. Hinchliffe, P., Carroll, J. & Sazanov, L. A. Identification of a novel subunit of respiratory complex I from Thermus thermophilus . Biochemistry 45, 4413–4420 (2006)

    Article  CAS  PubMed  Google Scholar 

  47. CCP4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

  48. Schneider, T. R. & Sheldrick, G. M. Substructure solution with SHELXD . Acta Crystallogr. D 58, 1772–1779 (2002)

    Article  PubMed  CAS  Google Scholar 

  49. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276, 472–494 (1997)

    Article  CAS  PubMed  Google Scholar 

  50. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  MathSciNet  PubMed  CAS  Google Scholar 

  51. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

    Article  CAS  Google Scholar 

  52. Jones, T. A. & Kjeldgaard, M. Electron-density map interpretation. Methods Enzymol. 277, 173–208 (1997)

    Article  CAS  PubMed  Google Scholar 

  53. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  CAS  PubMed  Google Scholar 

  54. Rudolph, M. G., Wingren, C., Crowley, M. P., Chien, Y. H. & Wilson, I. A. Combined pseudo-merohedral twinning, non-crystallographic symmetry and pseudo-translation in a monoclinic crystal form of the γδ T-cell ligand T10. Acta Crystallogr. D 60, 656–664 (2004)

    Article  PubMed  CAS  Google Scholar 

  55. Berrisford, J. M. & Sazanov, L. A. Structural basis for the mechanism of respiratory complex I. J. Biol. Chem. 284, 29773–29783 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007)

    Article  CAS  PubMed  Google Scholar 

  57. Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001)

    Article  CAS  PubMed  Google Scholar 

  58. McGuffin, L. J., Bryson, K. & Jones, D. T. The PSIPRED protein structure prediction server. Bioinformatics 16, 404–405 (2000)

    Article  CAS  PubMed  Google Scholar 

  59. Rost, B., Yachdav, G. & Liu, J. The PredictProtein server. Nucleic Acids Res. 32, W321–W326 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the Medical Research Council. We thank the European Synchrotron Radiation Facility and the Swiss Light Source for provision of synchrotron radiation facilities. We are grateful to the staff of beamlines ID23, ID29 (ESRF, Grenoble) and X06SA (Swiss Light Source, Villigen) for assistance. We thank J. E. Walker and A. Leslie for discussions of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.G.E. purified and crystallized the membrane domain of E. coli complex I; R.B. purified and crystallized intact T. thermophilus complex I; R.G.E. and R.B. collected and analysed X-ray data; L.A.S. designed the project, analysed data and wrote the manuscript, with contributions from R.G.E. and R.B.

Corresponding author

Correspondence to Leonid A. Sazanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

This file contains Supplementary Figures 1-7 with legends, Supplementary Tables 1-2 and References. (PDF 2039 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, R., Baradaran, R. & Sazanov, L. The architecture of respiratory complex I. Nature 465, 441–445 (2010). https://doi.org/10.1038/nature09066

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09066

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing