Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of HIV-1 Tat complexed with human P-TEFb

Abstract

Regulation of the expression of the human immunodeficiency virus (HIV) genome is accomplished in large part by controlling transcription elongation. The viral protein Tat hijacks the host cell’s RNA polymerase II elongation control machinery through interaction with the positive transcription elongation factor, P-TEFb, and directs the factor to promote productive elongation of HIV mRNA. Here we describe the crystal structure of the Tat·P-TEFb complex containing HIV-1 Tat, human Cdk9 (also known as CDK9), and human cyclin T1 (also known as CCNT1). Tat adopts a structure complementary to the surface of P-TEFb and makes extensive contacts, mainly with the cyclin T1 subunit of P-TEFb, but also with the T-loop of the Cdk9 subunit. The structure provides a plausible explanation for the tolerance of Tat to sequence variations at certain sites. Importantly, Tat induces significant conformational changes in P-TEFb. This finding lays a foundation for the design of compounds that would specifically inhibit the Tat·P-TEFb complex and block HIV replication.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overall structure of the Tat·P-TEFb·ATP.
Figure 2: Structure of P-TEFb-bound Tat.
Figure 3: The Tat-interacting areas of P-TEFb.
Figure 4: Comparison of the crystal structures of P-TEFb·ATP and Tat·P-TEFb·ATP.
Figure 5: A conservation-dependent location of Tat’s amino acid residues.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for Tat·P-TEFb and Tat·P-TEFb·ATP structures have been deposited in the Protein Data Bank with accession numbers 3mi9 and 3mia, respectively.

References

  1. Onafuwa-Nuga, A. & Telesnitsky, A. The remarkable frequency of human immunodeficiency virus type 1 genetic recombination. Microbiol. Mol. Biol. Rev. 73, 451–80 (2009)

    Article  CAS  PubMed Central  Google Scholar 

  2. Letvin, N. L. Virology. Moving forward in HIV vaccine development. Science 326, 1196–1198 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Zhu, Y. et al. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro . Genes Dev. 11, 2622–2632 (1997)

    Article  CAS  PubMed Central  Google Scholar 

  4. Mancebo, H. S. et al. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro . Genes Dev. 11, 2633–2644 (1997)

    Article  CAS  PubMed Central  Google Scholar 

  5. Garber, M. E., Wei, P. & Jones, K. A. HIV-1 Tat interacts with cyclin T1 to direct the P-TEFb CTD kinase complex to TAR RNA. Cold Spring Harb. Symp. Quant. Biol. 63, 371–380 (1998)

    Article  CAS  Google Scholar 

  6. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006)

    Article  CAS  Google Scholar 

  7. Peng, J., Zhu, Y., Milton, J. T. & Price, D. H. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev. 12, 755–762 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  8. Marshall, N. F., Peng, J., Xie, Z. & Price, D. H. Control of RNA polymerase II elongation potential by a novel carboxyl-terminal domain kinase. J. Biol. Chem. 271, 27176–27183 (1996)

    Article  CAS  Google Scholar 

  9. Fu, T. J., Peng, J., Lee, G., Price, D. H. & Flores, O. Cyclin K functions as a CDK9 regulatory subunit and participates in RNA polymerase II transcription. J. Biol. Chem. 274, 34527–34530 (1999)

    Article  CAS  Google Scholar 

  10. Chao, S. H. & Price, D. H. Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo . J. Biol. Chem. 276, 31793–31799 (2001)

    Article  CAS  Google Scholar 

  11. Zhou, Q. & Yik, J. H. The Yin and Yang of P-TEFb regulation: implications for human immunodeficiency virus gene expression and global control of cell growth and differentiation. Microbiol. Mol. Biol. Rev. 70, 646–659 (2006)

    Article  CAS  PubMed Central  Google Scholar 

  12. Michels, A. A. & Bensaude, O. RNA-driven cyclin-dependent kinase regulation: when CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners. Biotechnol. J. 3, 1022–1032 (2008)

    Article  CAS  Google Scholar 

  13. Sedore, S. C. et al. Manipulation of P-TEFb control machinery by HIV: recruitment of P-TEFb from the large form by Tat and binding of HEXIM1 to TAR. Nucleic Acids Res. 35, 4347–4358 (2007)

    Article  CAS  PubMed Central  Google Scholar 

  14. Wimmer, J. et al. Interactions between Tat and TAR and human immunodeficiency virus replication are facilitated by human cyclin T1 but not cyclins T2a or T2b. Virology 255, 182–189 (1999)

    Article  CAS  Google Scholar 

  15. Bieniasz, P. D., Grdina, T. A., Bogerd, H. P. & Cullen, B. R. Recruitment of a protein complex containing Tat and cyclin T1 to TAR governs the species specificity of HIV-1 Tat. EMBO J. 17, 7056–7065 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  16. Fujinaga, K. et al. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J. Virol. 72, 7154–7159 (1998)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhou, M. et al. Tat modifies the activity of CDK9 to phosphorylate serine 5 of the RNA polymerase II carboxyl-terminal domain during human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 20, 5077–5086 (2000)

    Article  CAS  PubMed Central  Google Scholar 

  18. Pavletich, N. P. Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J. Mol. Biol. 287, 821–828 (1999)

    Article  CAS  Google Scholar 

  19. Garber, M. E. et al. The interaction between HIV-1 Tat and human cyclin T1 requires zinc and a critical cysteine residue that is not conserved in the murine CycT1 protein. Genes Dev. 12, 3512–3527 (1998)

    Article  CAS  PubMed Central  Google Scholar 

  20. Janin, J. Specific versus non-specific contacts in protein crystals. Nature Struct. Biol. 4, 973–974 (1997)

    Article  CAS  Google Scholar 

  21. Baumli, S. et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation. EMBO J. 27, 1907–1918 (2008)

    Article  CAS  PubMed Central  Google Scholar 

  22. Kuppuswamy, M., Subramanian, T., Srinivasan, A. & Chinnadurai, G. Multiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis. Nucleic Acids Res. 17, 3551–3561 (1989)

    Article  CAS  PubMed Central  Google Scholar 

  23. Sadaie, M. R., Mukhopadhyaya, R., Benaissa, Z. N., Pavlakis, G. N. & Wong-Staal, F. Conservative mutations in the putative metal-binding region of human immunodeficiency virus Tat disrupt virus replication. AIDS Res. Hum. Retroviruses 6, 1257–1263 (1990)

    Article  CAS  Google Scholar 

  24. Ruben, S. et al. Structural and functional characterization of human immunodeficiency virus tat protein. J. Virol. 63, 1–8 (1989)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeang, K. T., Xiao, H. & Rich, E. A. Multifaceted activities of the HIV-1 transactivator of transcription, Tat. J. Biol. Chem. 274, 28837–28840 (1999)

    Article  CAS  Google Scholar 

  26. Rice, A. P. & Carlotti, F. Mutational analysis of the conserved cysteine-rich region of the human immunodeficiency virus type 1 Tat protein. J. Virol. 64, 1864–1868 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Anand, K., Schulte, A., Vogel-Bachmayr, K., Scheffzek, K. & Geyer, M. Structural insights into the cyclin T1-Tat-TAR RNA transcription activation complex from EIAV. Nature Struct. Mol. Biol. 15, 1287–1292 (2008)

    Article  CAS  Google Scholar 

  28. Taube, R. et al. Interactions between equine cyclin T1, Tat, and TAR are disrupted by a leucine-to-valine substitution found in human cyclin T1. J. Virol. 74, 892–898 (2000)

    Article  CAS  PubMed Central  Google Scholar 

  29. Derse, D. & Newbold, S. H. Mutagenesis of EIAV TAT reveals structural features essential for transcriptional activation and TAR element recognition. Virology 194, 530–536 (1993)

    Article  CAS  Google Scholar 

  30. Ippolito, J. A. & Steitz, T. A. A 1.3-Å resolution crystal structure of the HIV-1 trans-activation response region RNA stem reveals a metal ion-dependent bulge conformation. Proc. Natl Acad. Sci. USA 95, 9819–9824 (1998)

    Article  ADS  CAS  Google Scholar 

  31. Richter, S., Ping, Y. H. & Rana, T. M. TAR RNA loop: a scaffold for the assembly of a regulatory switch in HIV replication. Proc. Natl Acad. Sci. USA 99, 7928–7933 (2002)

    Article  ADS  CAS  Google Scholar 

  32. Campbell, G. R. & Loret, E. P. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 6, 50 (2009)

    Article  PubMed Central  Google Scholar 

  33. Hemelaar, J., Gouws, E., Ghys, P. D. & Osmanov, S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. AIDS 20, W13–W23 (2006)

    Article  Google Scholar 

  34. Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004)

    Article  CAS  PubMed Central  Google Scholar 

  35. Kuiken, C. et al. HIV Sequence Compendium 2009, LA-UR 09–03280 (Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, USA). (2009)

  36. D’Orso, I. & Frankel, A. D. Tat acetylation modulates assembly of a viral-host RNA-protein transcription complex. Proc. Natl Acad. Sci. USA 106, 3101–3106 (2009)

    Article  ADS  Google Scholar 

  37. Barboric, M. et al. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Nucleic Acids Res. 35, 2003–2012 (2007)

    Article  CAS  PubMed Central  Google Scholar 

  38. Michels, A. A. et al. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Mol. Cell. Biol. 23, 4859–4869 (2003)

    Article  CAS  PubMed Central  Google Scholar 

  39. Yik, J. H. et al. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Mol. Cell 12, 971–982 (2003)

    Article  CAS  Google Scholar 

  40. Russo, A. A., Jeffrey, P. D., Patten, A. K., Massague, J. & Pavletich, N. P. Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382, 325–331 (1996)

    Article  ADS  CAS  Google Scholar 

  41. Li, Q. et al. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. J. Biol. Chem. 280, 28819–28826 (2005)

    Article  CAS  Google Scholar 

  42. Chen, R., Yang, Z. & Zhou, Q. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. J. Biol. Chem. 279, 4153–4160 (2004)

    Article  CAS  Google Scholar 

  43. Wang, Y., Liu, X. Y. & De Clercq, E. Role of the HIV-1 positive elongation factor P-TEFb and inhibitors thereof. Mini Rev. Med. Chem. 9, 379–385 (2009)

    Article  CAS  Google Scholar 

  44. Jancarik, J., Pufan, R., Hong, C., Kim, S. H. & Kim, R. Optimum solubility (OS) screening: an efficient method to optimize buffer conditions for homogeneity and crystallization of proteins. Acta Crystallogr. D 60, 1670–1673 (2004)

    Article  Google Scholar 

  45. Tahirov, T. H. et al. High-resolution crystals of methionine aminopeptidase from Pyrococcus furiosus obtained by water-mediated transformation. J. Struct. Biol. 121, 68–72 (1998)

    Article  CAS  Google Scholar 

  46. Otwinowski, Z. & Minor, W. Processing of X-ray Diffraction Data Collected in Oscillation Mode (eds. Carter, J. C. W. & Sweet, R. M.). (1997)

  47. Brünger, A. T. et al. Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998)

    Article  Google Scholar 

  48. Vassylyev, D. G., Vassylyeva, M. N., Perederina, A., Tahirov, T. H. & Artsimovitch, I. Structural basis for transcription elongation by bacterial RNA polymerase. Nature 448, 157–162 (2007)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Lovelace and G. E. Borgstahl for maintenance and management of the Eppley Institute’s X-ray Crystallography facility; D. G. Vassylyev for the zonal scaling instruction files. This work is supported by the NIH grants GM35500 and AI074392 to D.H.P., by Nebraska Department of Health and Human Services grant LB506 and in part by NIH grant GM082923 to T.H.T. This work is also based on research conducted at the Advanced Photon Source on the Northeastern Collaborative Access Team beamlines, which are supported by award RR-15301 from the National Center for Research Resources at the National Institutes of Health. Use of the Advanced Photon Source is supported by the US Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. The Eppley Institute’s X-ray Crystallography facility is supported by Cancer Center Support Grant P30CA036727.

Author information

Authors and Affiliations

Authors

Contributions

T.H.T. managed the crystallization and structure determination part of the project, solved the crystal structures and prepared the manuscript. N.D.B. obtained the crystals. Diffraction data collection was performed by N.D.B. and T.H.T. Protein cloning, expression, purification and writing the corresponding methods sections were performed by S.C.S., K.V. and J.J.C., respectively. D.H.P. managed the protein production part of the project, and helped generate and edit the manuscript.

Corresponding author

Correspondence to Tahir H. Tahirov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12 with legends, Supplementary Tables 1-2 and References. (PDF 14705 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tahirov, T., Babayeva, N., Varzavand, K. et al. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465, 747–751 (2010). https://doi.org/10.1038/nature09131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research