Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Driving the cell cycle with a minimal CDK control network

Abstract

Control of eukaryotic cell proliferation involves an extended regulatory network, the complexity of which has made it difficult to understand the basic principles of the cell cycle. To investigate the core engine of the mitotic cycle we have generated a minimal control network in fission yeast that efficiently sustains cellular reproduction. Here we demonstrate that orderly progression through the major events of the cell cycle can be driven by oscillation of an engineered monomolecular cyclin-dependent protein kinase (CDK) module lacking much of the canonical regulation. We show further that the CDK oscillator acts as the primary organizer of the cell cycle, imposing timing and directionality to a system of two CDK activity thresholds that define independent cell cycle phases. We propose that this simple core architecture forms the basic control of the eukaryotic cell cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A Cdc13-L-Cdc2 fusion in fission yeast.
Figure 2: Oscillation of a single CDK activity between two thresholds.
Figure 3: Resetting the cell cycle.
Figure 4: Timing and directionality of the minimal cell cycle.
Figure 5: Role of Cdc2 T14 and Y15 phosphorylation.

Similar content being viewed by others

References

  1. Morgan, D. O. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13, 261–291 (1997)

    Article  CAS  Google Scholar 

  2. Loog, M. & Morgan, D. O. Cyclin specificity in the phosphorylation of cyclin-dependent kinase substrates. Nature 434, 104–108 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nature Rev. Mol. Cell Biol. 8, 149–160 (2007)

    Article  CAS  Google Scholar 

  4. Yang, J. & Kornbluth, S. All aboard the cyclin train: subcellular trafficking of cyclins and their CDK partners. Trends Cell Biol. 9, 207–210 (1999)

    Article  CAS  Google Scholar 

  5. Sha, W. et al. Hysteresis drives cell-cycle transitions in Xenopus laevis egg extracts. Proc. Natl Acad. Sci. USA 100, 975–980 (2003)

    Article  ADS  CAS  Google Scholar 

  6. Pomerening, J. R., Sontag, E. D. & Ferrell, J. E. Building a cell cycle oscillator: hysteresis and bistability in the activation of Cdc2. Nature Cell Biol. 5, 346–351 (2003)

    Article  CAS  Google Scholar 

  7. Kim, S. Y. & Ferrell, J. E. Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128, 1133–1145 (2007)

    Article  CAS  Google Scholar 

  8. Novak, B., Tyson, J. J., Gyorffy, B. & Csikasz-Nagy, A. Irreversible cell-cycle transitions are due to systems-level feedback. Nature Cell Biol. 9, 724–728 (2007)

    Article  CAS  Google Scholar 

  9. Deibler, R. W. & Kirschner, M. W. Quantitative reconstitution of mitotic CDK1 activation in somatic cell extracts. Mol. Cell 37, 753–767 (2010)

    Article  CAS  Google Scholar 

  10. Fisher, D. L. & Nurse, P. A single fission yeast mitotic cyclin B p34cdc2 kinase promotes both S-phase and mitosis in the absence of G1 cyclins. EMBO J. 15, 850–860 (1996)

    Article  CAS  Google Scholar 

  11. Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477–491 (2004)

    Article  CAS  Google Scholar 

  12. Santamaría, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811–815 (2007)

    Article  ADS  Google Scholar 

  13. Hochegger, H., Takeda, S. & Hunt, T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nature Rev. Mol. Cell Biol. 9, 910–916 (2008)

    Article  CAS  Google Scholar 

  14. Nurse, P., Thuriaux, P. & Nasmyth, K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 146, 167–178 (1976)

    Article  CAS  Google Scholar 

  15. Nurse, P. & Bissett, Y. Gene required in G1 for commitment to cell cycle and in G2 for control of mitosis in fission yeast. Nature 292, 558–560 (1981)

    Article  ADS  CAS  Google Scholar 

  16. Mondesert, O., McGowan, C. H. & Russell, P. Cig2, a B-type cyclin, promotes the onset of S in Schizosaccharomyces pombe. Mol. Cell. Biol. 16, 1527–1533 (1996)

    Article  CAS  Google Scholar 

  17. Martin-Castellanos, C., Labib, K. & Moreno, S. B-type cyclins regulate G1 progression in fission yeast in opposition to the p25rum1 cdk inhibitor. EMBO J. 15, 839–849 (1996)

    Article  CAS  Google Scholar 

  18. Booher, R. & Beach, D. Involvement of cdc13+ in mitotic control in Schizosaccharomyces pombe: possible interaction of the gene product with microtubules. EMBO J. 7, 2321–2327 (1988)

    Article  CAS  Google Scholar 

  19. Booher, R. N., Alfa, C. E., Hyams, J. S. & Beach, D. H. The fission yeast cdc2/cdc13/suc1 protein kinase: regulation of catalytic activity and nuclear localization. Cell 58, 485–497 (1989)

    Article  CAS  Google Scholar 

  20. Moreno, S., Hayles, J. & Nurse, P. Regulation of p34cdc2 protein kinase during mitosis. Cell 58, 361–372 (1989)

    Article  CAS  Google Scholar 

  21. Bueno, A., Richardson, H., Reed, S. I. & Russell, P. A fission yeast B-type cyclin functioning early in the cell cycle. Cell 66, 149–159 (1991)

    Article  CAS  Google Scholar 

  22. Correa-Bordes, J., Gulli, M. P. & Nurse, P. p25rum1 promotes proteolysis of the mitotic B-cyclin p56cdc13 during G1 of the fission yeast cell cycle. EMBO J. 16, 4657–4664 (1997)

    Article  CAS  Google Scholar 

  23. Benito, J., Martín-Castellanos, C. & Moreno, S. Regulation of the G1 phase of the cell cycle by periodic stabilization and degradation of the p25rum1 CDK inhibitor. EMBO J. 17, 482–497 (1998)

    Article  CAS  Google Scholar 

  24. Forsburg, S. L. & Nurse, P. Identification of a G1-type cyclin puc1+ in the fission yeast Schizosaccharomyces pombe. Nature 351, 245–248 (1991)

    Article  ADS  CAS  Google Scholar 

  25. Martín-Castellanos, C., Blanco, M. A., de Prada, J. M. & Moreno, S. The puc1 cyclin regulates the G1 phase of the fission yeast cell cycle in response to cell size. Mol. Biol. Cell 11, 543–554 (2000)

    Article  Google Scholar 

  26. Broek, D., Bartlett, R., Crawford, K. & Nurse, P. Involvement of p34cdc2 in establishing the dependency of S phase on mitosis. Nature 349, 388–393 (1991)

    Article  ADS  CAS  Google Scholar 

  27. Hayles, J., Fisher, D., Woollard, A. & Nurse, P. Temporal order of S phase and mitosis in fission yeast is determined by the state of the p34cdc2-mitotic B cyclin complex. Cell 78, 813–822 (1994)

    Article  CAS  Google Scholar 

  28. Bishop, A. C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000)

    Article  ADS  CAS  Google Scholar 

  29. Dischinger, S., Krapp, A., Xie, L., Paulson, J. R. & Simanis, V. Chemical genetic analysis of the regulatory role of Cdc2p in the S. pombe septation initiation network. J. Cell Sci. 121, 843–853 (2008)

    Article  CAS  Google Scholar 

  30. Decottignies, A., Zarzov, P. & Nurse, P. In vivo localisation of fission yeast cyclin-dependent kinase cdc2p and cyclin B cdc13p during mitosis and meiosis. J. Cell Sci. 114, 2627–2640 (2001)

    CAS  PubMed  Google Scholar 

  31. Buck, V., Russell, P. & Millar, J. B. Identification of a cdk-activating kinase in fission yeast. EMBO J. 14, 6173–6183 (1995)

    Article  CAS  Google Scholar 

  32. Tanaka, K. & Okayama, H. A pcl-like cyclin activates the Res2p-Cdc10p cell cycle “start” transcriptional factor complex in fission yeast. Mol. Biol. Cell 11, 2845–2862 (2000)

    Article  CAS  Google Scholar 

  33. Watt, S. et al. urg1: a uracil-regulatable promoter system for fission yeast with short induction and repression times. PLoS ONE 3, e1428 (2008)

    Article  ADS  Google Scholar 

  34. Stern, B. & Nurse, P. A quantitative model for the cdc2 control of S phase and mitosis in fission yeast. Trends Genet. 12, 345–350 (1996)

    Article  CAS  Google Scholar 

  35. Murray, A. W. Recycling the cell cycle: cyclins revisited. Cell 116, 221–234 (2004)

    Article  CAS  Google Scholar 

  36. Moreno, S. & Nurse, P. Regulation of progression through the G1 phase of the cell cycle by the rum1+ gene. Nature 367, 236–242 (1994)

    Article  ADS  CAS  Google Scholar 

  37. Snaith, H. A. & Forsburg, S. L. Rereplication phenomenon in fission yeast requires MCM proteins and other S phase genes. Genetics 152, 839–851 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Correa-Bordes, J. & Nurse, P. p25rum1 orders S phase and mitosis by acting as an inhibitor of the p34cdc2 mitotic kinase. Cell 83, 1001–1009 (1995)

    Article  CAS  Google Scholar 

  39. Russell, P. & Nurse, P. cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45, 145–153 (1986)

    Article  CAS  Google Scholar 

  40. Russell, P. & Nurse, P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49, 559–567 (1987)

    Article  CAS  Google Scholar 

  41. Gould, K. L. & Nurse, P. Tyrosine phosphorylation of the fission yeast cdc2+ protein kinase regulates entry into mitosis. Nature 342, 39–45 (1989)

    Article  ADS  CAS  Google Scholar 

  42. Lundgren, K. et al. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64, 1111–1122 (1991)

    Article  CAS  Google Scholar 

  43. Fantes, P. A. & Nurse, P. Control of the timing of cell division in fission yeast. Cell size mutants reveal a second control pathway. Exp. Cell Res. 115, 317–329 (1978)

    Article  CAS  Google Scholar 

  44. Rhind, N., Furnari, B. & Russell, P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev. 11, 504–511 (1997)

    Article  CAS  Google Scholar 

  45. Rhind, N. & Russell, P. Tyrosine phosphorylation of cdc2 is required for the replication checkpoint in Schizosaccharomyces pombe. Mol. Cell. Biol. 18, 3782–3787 (1998)

    Article  CAS  Google Scholar 

  46. Fantes, P. & Nurse, P. Control of cell size at division in fission yeast by a growth-modulated size control over nuclear division. Exp. Cell Res. 107, 377–386 (1977)

    Article  CAS  Google Scholar 

  47. Petersen, J. & Nurse, P. TOR signalling regulates mitotic commitment through the stress MAP kinase pathway and the Polo and Cdc2 kinases. Nature Cell Biol. 9, 1263–1272 (2007)

    Article  CAS  Google Scholar 

  48. Den Haese, G. J., Walworth, N., Carr, A. M. & Gould, K. L. The Wee1 protein kinase regulates T14 phosphorylation of fission yeast Cdc2. Mol. Biol. Cell 6, 371–385 (1995)

    Article  CAS  Google Scholar 

  49. Martin, S. G. & Berthelot-Grosjean, M. Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459, 852–856 (2009)

    Article  ADS  CAS  Google Scholar 

  50. Moseley, J. B., Mayeux, A., Paoletti, A. & Nurse, P. A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459, 857–860 (2009)

    Article  ADS  CAS  Google Scholar 

  51. Hayles, J. & Nurse, P. Genetics of the fission yeast Schizosaccharomyces pombe. Annu. Rev. Genet. 26, 373–402 (1992)

    Article  CAS  Google Scholar 

  52. Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823 (1991)

    Article  CAS  Google Scholar 

  53. Yamano, H., Gannon, J. & Hunt, T. The role of proteolysis in cell cycle progression in Schizosaccharomyces pombe. EMBO J. 15, 5268–5279 (1996)

    Article  CAS  Google Scholar 

  54. Obara-Ishihara, T. & Okayama, H. A B-type cyclin negatively regulates conjugation via interacting with cell cycle ‘start’ genes in fission yeast. EMBO J. 13, 1863–1872 (1994)

    Article  CAS  Google Scholar 

  55. Forsburg, S. L. & Nurse, P. Analysis of the Schizosaccharomyces pombe cyclin puc1: evidence for a role in cell cycle exit. J. Cell Sci. 107, 601–613 (1994)

    CAS  PubMed  Google Scholar 

  56. Zarzov, P., Decottignies, A., Baldacci, G. & Nurse, P. G1/S CDK is inhibited to restrain mitotic onset when DNA replication is blocked in fission yeast. EMBO J. 21, 3370–3376 (2002)

    Article  CAS  Google Scholar 

  57. Nurse, P. Genetic control of cell size at cell division in yeast. Nature 256, 547–551 (1975)

    Article  ADS  CAS  Google Scholar 

  58. Thuriaux, P., Sipiczki, M. & Fantes, P. A. Genetical analysis of a sterile mutant by protoplast fusion in the fission yeast Schizosaccharomyces pombe. J. Gen. Microbiol. 116, 525–528 (1980)

    CAS  PubMed  Google Scholar 

  59. Bähler, J. et al. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14, 943–951 (1998)

    Article  Google Scholar 

  60. Hentges, P., Van Driessche, B., Tafforeau, L., Vandenhaute, J. & Carr, A. M. Three novel antibiotic marker cassettes for gene disruption and marker switching in Schizosaccharomyces pombe. Yeast 22, 1013–1019 (2005)

    Article  CAS  Google Scholar 

  61. Matsuo, Y., Asakawa, K., Toda, T. & Katayama, S. A rapid method for protein extraction from fission yeast. Biosci. Biotechnol. Biochem. 70, 1992–1994 (2006)

    Article  CAS  Google Scholar 

  62. Bhaumik, D. & Wang, T. S. Mutational effect of fission yeast polα on cell cycle events. Mol. Biol. Cell 9, 2107–2123 (1998)

    Article  CAS  Google Scholar 

  63. Woods, A. et al. Definition of individual components within the cytoskeleton of Trypanosoma brucei by a library of monoclonal antibodies. J. Cell Sci. 93, 491–500 (1989)

    PubMed  Google Scholar 

  64. Lindsay, H. D. et al. S-phase-specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev. 12, 382–395 (1998)

    Article  CAS  Google Scholar 

  65. Uemura, T. & Yanagida, M. Isolation of type I and II DNA topoisomerase mutants from fission yeast: single and double mutants show different phenotypes in cell growth and chromatin organization. EMBO J. 3, 1737–1744 (1984)

    Article  CAS  Google Scholar 

  66. Sazer, S. & Sherwood, S. W. Mitochondrial growth and DNA synthesis occur in the absence of nuclear DNA replication in fission yeast. J. Cell Sci. 97, 509–516 (1990)

    CAS  PubMed  Google Scholar 

  67. Sivakumar, S., Porter-Goff, M., Patel, P. K., Benoit, K. & Rhind, N. In vivo labeling of fission yeast DNA with thymidine and thymidine analogs. Methods 33, 213–219 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Hayles, P.-Y. Wu and F. Navarro for critically reading the manuscript, and N. Rhind for the anti-Cds1 antibody. D.C. was supported by post-doctoral fellowships from EMBO (ALTF 899-2007) and the Human Frontier Science Program (LT00623/2008) and P.N. by the Breast Cancer Research Foundation, The Rockefeller University and the Anderson Cancer Center Research at Rockefeller University.

Author information

Authors and Affiliations

Authors

Contributions

D.C. designed and performed the experiments and wrote the manuscript. Both authors discussed the experiments and edited the manuscript.

Corresponding author

Correspondence to Damien Coudreuse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-20 with legends and Supplementary Table 1. A corrected file was uploaded on 23 February 2011 as it was noticed that figures 5 and 6 had been transposed in the original version. (PDF 3246 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coudreuse, D., Nurse, P. Driving the cell cycle with a minimal CDK control network. Nature 468, 1074–1079 (2010). https://doi.org/10.1038/nature09543

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09543

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing