Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Protein targeting and degradation are coupled for elimination of mislocalized proteins

Abstract

A substantial proportion of the genome encodes membrane proteins that are delivered to the endoplasmic reticulum by dedicated targeting pathways1. Membrane proteins that fail targeting must be rapidly degraded to avoid aggregation and disruption of cytosolic protein homeostasis2,3. The mechanisms of mislocalized protein (MLP) degradation are unknown. Here we reconstitute MLP degradation in vitro to identify factors involved in this pathway. We find that nascent membrane proteins tethered to ribosomes are not substrates for ubiquitination unless they are released into the cytosol. Their inappropriate release results in capture by the Bag6 complex, a recently identified ribosome-associating chaperone4. Bag6-complex-mediated capture depends on the presence of unprocessed or non-inserted hydrophobic domains that distinguish MLPs from potential cytosolic proteins. A subset of these Bag6 complex ‘clients’ are transferred to TRC40 for insertion into the membrane, whereas the remainder are rapidly ubiquitinated. Depletion of the Bag6 complex selectively impairs the efficient ubiquitination of MLPs. Thus, by its presence on ribosomes that are synthesizing nascent membrane proteins, the Bag6 complex links targeting and ubiquitination pathways. We propose that such coupling allows the fast tracking of MLPs for degradation without futile engagement of the cytosolic folding machinery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Non-translocated PrP is rapidly ubiquitinated.
Figure 2: BAG6 interacts with MLPs through hydrophobic domains.
Figure 3: BAG6 captures MLPs released from the ribosome.
Figure 4: Maximum ubiquitination of MLPs requires BAG6.

Similar content being viewed by others

References

  1. Cross, B. C., Sinning, I., Luirink, J. & High, S. Delivering proteins for export from the cytosol. Nature Rev. Mol. Cell Biol. 10, 255–264 (2009)

    Article  CAS  Google Scholar 

  2. Rane, N. S., Yonkovich, J. L. & Hegde, R. S. Protection from cytosolic prion protein toxicity by modulation of protein translocation. EMBO J. 23, 4550–4559 (2004)

    Article  CAS  Google Scholar 

  3. Kang, S. W. et al. Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127, 999–1013 (2006)

    Article  CAS  Google Scholar 

  4. Mariappan, M. et al. A ribosome-associating factor chaperones tail-anchored membrane proteins. Nature 466, 1120–1124 (2010)

    Article  ADS  CAS  Google Scholar 

  5. Kim, S. J., Mitra, D., Salerno, J. R. & Hegde, R. S. Signal sequences control gating of the protein translocation channel in a substrate-specific manner. Dev. Cell 2, 207–217 (2002)

    Article  CAS  Google Scholar 

  6. Levine, C. G., Mitra, D., Sharma, A., Smith, C. L. & Hegde, R. S. The efficiency of protein compartmentalization into the secretory pathway. Mol. Biol. Cell 16, 279–291 (2005)

    Article  CAS  Google Scholar 

  7. Kim, S. J. & Hegde, R. S. Cotranslational partitioning of nascent prion protein into multiple populations at the translocation channel. Mol. Biol. Cell 13, 3775–3786 (2002)

    Article  CAS  Google Scholar 

  8. Rane, N. S., Chakrabarti, O., Feigenbaum, L. & Hegde, R. S. Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein. J. Cell Biol. 188, 515–526 (2010)

    Article  CAS  Google Scholar 

  9. Orsi, A., Fioriti, L., Chiesa, R. & Sitia, R. Conditions of endoplasmic reticulum stress favor the accumulation of cytosolic prion protein. J. Biol. Chem. 281, 30431–30438 (2006)

    Article  CAS  Google Scholar 

  10. Drisaldi, B. et al. Mutant PrP is delayed in its exit from the endoplasmic reticulum, but neither wild-type nor mutant PrP undergoes retrotranslocation prior to proteasomal degradation. J. Biol. Chem. 278, 21732–21743 (2003)

    Article  CAS  Google Scholar 

  11. Ma, J. & Lindquist, S. Conversion of PrP to a self-perpetuating PrPSc-like conformation in the cytosol. Science 298, 1785–1788 (2002)

    Article  ADS  CAS  Google Scholar 

  12. Chakrabarti, O. & Hegde, R. S. Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137, 1136–1147 (2009)

    Article  CAS  Google Scholar 

  13. Ma, J., Wollmann, R. & Lindquist, S. Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298, 1781–1785 (2002)

    Article  ADS  CAS  Google Scholar 

  14. Rane, N. S., Kang, S. W., Chakrabarti, O., Feigenbaum, L. & Hegde, R. S. Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev. Cell 15, 359–370 (2008)

    Article  CAS  Google Scholar 

  15. Buchberger, A., Bukau, B. & Sommer, T. Protein quality control in the cytosol and the endoplasmic reticulum: brothers in arms. Mol. Cell 40, 238–252 (2010)

    Article  CAS  Google Scholar 

  16. McDonough, H. & Patterson, C. CHIP: a link between the chaperone and proteasome systems. Cell Stress Chaperones 8, 303–308 (2003)

    Article  CAS  Google Scholar 

  17. Leznicki, P., Clancy, A., Schwappach, B. & High, S. Bat3 promotes the membrane integration of tail-anchored proteins. J. Cell Sci. 123, 2170–2178 (2010)

    Article  CAS  Google Scholar 

  18. Berndt, U., Oellerer, S., Zhang, Y., Johnson, A. E. & Rospert, S. A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel. Proc. Natl Acad. Sci. USA 106, 1398–1403 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Keenan, R. J., Freymann, D. M., Stroud, R. M. & Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70, 755–775 (2001)

    Article  CAS  Google Scholar 

  20. Stefanovic, S. & Hegde, R. S. Identification of a targeting factor for posttranslational membrane protein insertion into the ER. Cell 128, 1147–1159 (2007)

    Article  CAS  Google Scholar 

  21. Lehner, B. et al. Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 83, 153–167 (2004)

    Article  CAS  Google Scholar 

  22. Park, S. H. et al. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin–proteasome system. Mol. Biol. Cell 18, 153–165 (2007)

    Article  Google Scholar 

  23. Eisele, F. & Wolf, D. H. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582, 4143–4146 (2008)

    Article  CAS  Google Scholar 

  24. Heck, J. W., Cheung, S. K. & Hampton, R. Y. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc. Natl Acad. Sci. USA 107, 1106–1111 (2010)

    Article  ADS  CAS  Google Scholar 

  25. Nillegoda, N. B. et al. Ubr1 and Ubr2 function in a quality control pathway for degradation of unfolded cytosolic proteins. Mol. Biol. Cell 21, 2102–2116 (2010)

    Article  CAS  Google Scholar 

  26. Minami, R. et al. BAG-6 is essential for selective elimination of defective proteasomal substrates. J. Cell Biol. 190, 637–650 (2010)

    Article  CAS  Google Scholar 

  27. Ernst, R. et al. Enzymatic blockade of the ubiquitin–proteasome pathway. PLoS Biol. 8, e1000605 (2011)

    Article  Google Scholar 

  28. Wang, Q. et al. A chaperone holdase maintains polypeptides in soluble states for proteasome degradation. Mol. Cell 10.1016/j.molcel.2011.05.010 (in the press)

  29. Garrison, J. L., Kunkel, E. J., Hegde, R. S. & Taunton, J. A substrate-specific inhibitor of protein translocation into the endoplasmic reticulum. Nature 436, 285–289 (2005)

    Article  ADS  CAS  Google Scholar 

  30. Sharma, A., Mariappan, M., Appathurai, S. & Hegde, R. S. In vitro dissection of protein translocation into the mammalian endoplasmic reticulum. Methods Mol. Biol. 619, 339–363 (2010)

    Article  CAS  Google Scholar 

  31. Emerman, A. B., Zhang, Z. R., Chakrabarti, O. & Hegde, R. S. Compartment-restricted biotinylation reveals novel features of prion protein metabolism in vivo . Mol. Biol. Cell 21, 4325–4337 (2010)

    Article  CAS  Google Scholar 

  32. Ashok, A. & Hegde, R. S. Retrotranslocation of prion proteins from the endoplasmic reticulum by preventing GPI signal transamidation. Mol. Biol. Cell 19, 3463–3476 (2008)

    Article  CAS  Google Scholar 

  33. Cole, N. B. et al. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273, 797–801 (1996)

    Article  ADS  CAS  Google Scholar 

  34. Wu, M. M. et al. Organelle pH studies using targeted avidin and fluorescein–biotin. Chem. Biol. 7, 197–209 (2000)

    Article  CAS  Google Scholar 

  35. Magadán, J. G. et al. Multilayered mechanism of CD4 downregulation by HIV-1 Vpu involving distinct ER retention and ERAD targeting steps. PLoS Pathogens 6, e1000869 (2010)

    Article  Google Scholar 

  36. Fons, R. D., Bogert, B. A. & Hegde, R. S. Substrate-specific function of the translocon-associated protein complex during translocation across the ER membrane. J. Cell Biol. 160, 529–539 (2003)

    Article  CAS  Google Scholar 

  37. Gilmore, R., Blobel, G. & Walter, P. Protein translocation across the endoplasmic reticulum. I. Detection in the microsomal membrane of a receptor for the signal recognition particle. J. Cell Biol. 95, 463–469 (1982)

    Article  CAS  Google Scholar 

  38. Krieg, U. C., Walter, P. & Johnson, A. E. Photocrosslinking of the signal sequence of nascent preprolactin to the 54-kilodalton polypeptide of the signal recognition particle. Proc. Natl Acad. Sci. USA 83, 8604–8608 (1986)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to E. Whiteman and X. Li for carrying out the initial experiments for parts of this project, S.W. Kang, S. Shao, and Z. Zhang for discussions, P. Sengupta, J. Magadán, and C. Ott for constructs, J. Taunton and J. Garrison for cotransin, S. Shao for comments on the manuscript, and Y. Ye for discussions and sharing results before publication. This work was supported by the Intramural Research Program of the National Institutes of Health (R.S.H.) and a postdoctoral fellowship from The Wenner-Gren Foundations (T.H.).

Author information

Authors and Affiliations

Authors

Contributions

T.H. performed most of the experiments, with contributions from A.S. (ubiquitination assays in modified lysates), M.M. (defining the substrate specificity of BAG6), H.D.E. (characterizing the Fr-RRL system), E.G. (BAG6 crosslinking analysis) and R.S.H. (in vivo studies). R.S.H. conceived the project, guided the experiments and wrote the paper with input from all of the authors.

Corresponding author

Correspondence to Ramanujan S. Hegde.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Technical Notes relating to each of the main figures and Supplementary Figures 1-23 with legends. (PDF 9380 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hessa, T., Sharma, A., Mariappan, M. et al. Protein targeting and degradation are coupled for elimination of mislocalized proteins. Nature 475, 394–397 (2011). https://doi.org/10.1038/nature10181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10181

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing