Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice

Abstract

Reactive aldehydes are common carcinogens. They are also by-products of several metabolic pathways and, without enzymatic catabolism, may accumulate and cause DNA damage. Ethanol, which is metabolised to acetaldehyde, is both carcinogenic and teratogenic in humans. Here we find that the Fanconi anaemia DNA repair pathway counteracts acetaldehyde-induced genotoxicity in mice. Our results show that the acetaldehyde-catabolising enzyme Aldh2 is essential for the development of Fancd2−/− embryos. Nevertheless, acetaldehyde-catabolism-competent mothers (Aldh2+/− ) can support the development of double-mutant (Aldh2−/−Fancd2−/− ) mice. However, these embryos are unusually sensitive to ethanol exposure in utero, and ethanol consumption by postnatal double-deficient mice rapidly precipitates bone marrow failure. Lastly, Aldh2−/−Fancd2−/− mice spontaneously develop acute leukaemia. Acetaldehyde-mediated DNA damage may critically contribute to the genesis of fetal alcohol syndrome in fetuses, as well as to abnormal development, haematopoietic failure and cancer predisposition in Fanconi anaemia patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chicken Fanconi anaemia pathway knockout B cells are hypersensitive to acetaldehyde.
Figure 2: A single maternal allele of Aldh2 is essential for the development of Aldh2 −/− Fancd2 −/− mice.
Figure 3: Maternal ethanol exposure aborts the development of Aldh2 −/− Fancd2 −/− embryos.
Figure 4: Ethanol-induced bone marrow failure in Aldh2 −/− Fancd2 −/− mice.
Figure 5: Acute leukaemia in Aldh2 −/− Fancd2 −/− mice.

Similar content being viewed by others

References

  1. Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709–715 (1993)

    Article  CAS  ADS  Google Scholar 

  2. Patel, K. J. & Joenje, H. Fanconi anemia and DNA replication repair. DNA Repair (Amst.) 6, 885–890 (2007)

    Article  CAS  Google Scholar 

  3. O’Brien, P. J., Siraki, A. G. & Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 35, 609–662 (2005)

    Article  Google Scholar 

  4. Wang, M. et al. Identification of DNA adducts of acetaldehyde. Chem. Res. Toxicol. 13, 1149–1157 (2000)

    Article  CAS  Google Scholar 

  5. Stein, S., Lao, Y., Yang, I. Y., Hecht, S. S. & Moriya, M. Genotoxicity of acetaldehyde- and crotonaldehyde-induced 1,N2-propanodeoxyguanosine DNA adducts in human cells. Mutat. Res. 608, 1–7 (2006)

    Article  CAS  Google Scholar 

  6. Cheng, G. et al. Reactions of formaldehyde plus acetaldehyde with deoxyguanosine and DNA: formation of cyclic deoxyguanosine adducts and formaldehyde cross-links. Chem. Res. Toxicol. 16, 145–152 (2003)

    Article  CAS  ADS  Google Scholar 

  7. Vasiliou, V., Pappa, A. & Estey, T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab. Rev. 36, 279–299 (2004)

    Article  CAS  Google Scholar 

  8. Perez-Miller, S. et al. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nature Struct. Mol. Biol. 17, 159–164 (2010)

    Article  CAS  Google Scholar 

  9. Ridpath, J. R. et al. Cells deficient in the FANC/BRCA pathway are hypersensitive to plasma levels of formaldehyde. Cancer Res. 67, 11117–11122 (2007)

    Article  CAS  Google Scholar 

  10. Nagayoshi, H. et al. Increased formation of gastric N2-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase-2 knockout mice treated with ethanol. Mutat. Res. 673, 74–77 (2009)

    Article  CAS  Google Scholar 

  11. Matsuda, T. et al. Increased formation of hepatic N2-ethylidene-2′-deoxyguanosine DNA adducts in aldehyde dehydrogenase-2 knockout mice treated with ethanol. Carcinogenesis 28, 2363–2366 (2007)

    Article  CAS  Google Scholar 

  12. Seitz, H. K. & Stickel, F. Molecular mechanisms of alcohol-mediated carcinogenesis. Nature Rev. Cancer 7, 599–612 (2007)

    Article  CAS  Google Scholar 

  13. Chen, L. et al. Quantitation of an acetaldehyde adduct in human leukocyte DNA and the effect of smoking cessation. Chem. Res. Toxicol. 20, 108–113 (2007)

    Article  CAS  Google Scholar 

  14. Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607–620 (2004)

    Article  CAS  Google Scholar 

  15. Alpi, A. et al. UBE2T, the Fanconi anemia core complex, and FANCD2 are recruited independently to chromatin: a basis for the regulation of FANCD2 monoubiquitination. Mol. Cell. Biol. 27, 8421–8430 (2007)

    Article  CAS  Google Scholar 

  16. King, G. & Holmes, R. Human ocular aldehyde dehydrogenase isozymes: distribution and properties as major soluble proteins in cornea and lens. J. Exp. Zool. 282, 12–17 (1998)

    Article  CAS  Google Scholar 

  17. Pappa, A., Estey, T., Manzer, R., Brown, D. & Vasiliou, V. Human aldehyde dehydrogenase 3A1 (ALDH3A1): biochemical characterization and immunohistochemical localization in the cornea. Biochem. J. 376, 615–623 (2003)

    Article  CAS  Google Scholar 

  18. Riveros-Rosas, H., Julian-Sanchez, A. & Pina, E. Enzymology of ethanol and acetaldehyde metabolism in mammals. Arch. Med. Res. 28, 453–471 (1997)

    CAS  PubMed  Google Scholar 

  19. Kunitoh, S. et al. Acetaldehyde as well as ethanol is metabolized by human CYP2E1. J. Pharmacol. Exp. Ther. 280, 527–532 (1997)

    CAS  PubMed  Google Scholar 

  20. Parmar, K., D’Andrea, A. & Niedernhofer, L. J. Mouse models of Fanconi anemia. Mutat. Res. 668, 133–140 (2009)

    Article  CAS  Google Scholar 

  21. Crossan, G. P. et al. Disruption of mouse Slx4, a regulator of structure-specific nucleases, phenocopies Fanconi anemia. Nature Genet. 43, 147–152 (2011)

    Article  CAS  Google Scholar 

  22. Marietta, C., Thompson, L. H., Lamerdin, J. E. & Brooks, P. J. Acetaldehyde stimulates FANCD2 monoubiquitination, H2AX phosphorylation, and BRCA1 phosphorylation in human cells in vitro: implications for alcohol-related carcinogenesis. Mutat. Res. 664, 77–83 (2009)

    Article  CAS  Google Scholar 

  23. Yu, H. S. et al. Characteristics of aldehyde dehydrogenase 2 (Aldh2) knockout mice. Toxicol. Mech. Methods 19, 535–540 (2009)

    Article  CAS  Google Scholar 

  24. Houghtaling, S. et al. Epithelial cancer in Fanconi anemia complementation group D2 (Fancd2) knockout mice. Genes Dev. 17, 2021–2035 (2003)

    Article  CAS  Google Scholar 

  25. Sulik, K. K., Johnston, M. C. & Webb, M. A. Fetal alcohol syndrome: embryogenesis in a mouse model. Science 214, 936–938 (1981)

    Article  CAS  ADS  Google Scholar 

  26. Webster, W. S., Walsh, D. A., McEwen, S. E. & Lipson, A. H. Some teratogenic properties of ethanol and acetaldehyde in C57BL/6J mice: implications for the study of the fetal alcohol syndrome. Teratology 27, 231–243 (1983)

    Article  CAS  Google Scholar 

  27. O’Shea, K. S. & Kaufman, M. H. The teratogenic effect of acetaldehyde: implications for the study of the fetal alcohol syndrome. J. Anat. 128, 65–76 (1979)

    PubMed  PubMed Central  Google Scholar 

  28. Michot, F. & Gut, J. Alcohol-induced bone marrow damage. A bone marrow study in alcohol-dependent individuals. Acta Haematol. 78, 252–257 (1987)

    Article  CAS  Google Scholar 

  29. Nakao, S., Harada, M., Kondo, K., Mizushima, N. & Matsuda, T. Reversible bone marrow hypoplasia induced by alcohol. Am. J. Hematol. 37, 120–123 (1991)

    Article  CAS  Google Scholar 

  30. Meagher, R. C., Sieber, F. & Spivak, J. L. Suppression of hematopoietic-progenitor-cell proliferation by ethanol and acetaldehyde. N. Engl. J. Med. 307, 845–849 (1982)

    Article  CAS  Google Scholar 

  31. Marc, N., Fautrel, A., Damon, M., Guillouzo, A. & Corcos, L. Phenobarbital induction of aldehyde dehydrogenase type 2 mRNA in mouse liver: a candidate region on chromosome 7 for a putative regulatory gene. Biochem. Genet. 38, 297–308 (2000)

    Article  CAS  Google Scholar 

  32. Vasiliou, V., Torronen, R., Malamas, M. & Marselos, M. Inducibility of liver cytosolic aldehyde dehydrogenase activity in various animal species. Comp. Biochem. Physiol. C 94, 671–675 (1989)

    Article  CAS  Google Scholar 

  33. Chen, C.-H. et al. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science 321, 1493–1495 (2008)

    Article  CAS  ADS  Google Scholar 

  34. Perez-Miller, S. et al. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nature Struct. Mol. Biol. 17, 159–164 (2010)

    Article  CAS  Google Scholar 

  35. Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698–1701 (2009)

    Article  CAS  ADS  Google Scholar 

  36. Abel, E. L. & Sokol, R. J. A revised conservative estimate of the incidence of FAS and its economic impact. Alcohol. Clin. Exp. Res. 15, 514–524 (1991)

    Article  CAS  Google Scholar 

  37. Latino-Martel, P. et al. Maternal alcohol consumption during pregnancy and risk of childhood leukemia: systematic review and meta-analysis. Cancer Epidemiol. Biomarkers Prev. 19, 1238–1260 (2010)

    Article  CAS  Google Scholar 

  38. MacArthur, A. C. et al. Risk of childhood leukemia associated with parental smoking and alcohol consumption prior to conception and during pregnancy: the cross-Canada childhood leukemia study. Cancer Causes Control 19, 283–295 (2008)

    Article  Google Scholar 

  39. Brooks, P. J., Enoch, M. A., Goldman, D., Li, T. K. & Yokoyama, A. The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med. 6, e50 (2009)

    Article  Google Scholar 

  40. McKay, J. D. et al. A genome-wide association study of upper aerodigestive tract cancers conducted within the INHANCE Consortium. PLoS Genet. 7, e1001333 (2011)

    Article  CAS  Google Scholar 

  41. Alter, B. P., Joenje, H., Oostra, A. B. & Pals, G. Fanconi anemia: adult head and neck cancer and hematopoietic mosaicism. Arch. Otolaryngol. Head Neck Surg. 131, 635–639 (2005)

    Article  Google Scholar 

  42. Hazen, S. L., Hsu, F. F., d’Avignon, A. & Heinecke, J. W. Human neutrophils employ myeloperoxidase to convert α-amino acids to a battery of reactive aldehydes: a pathway for aldehyde generation at sites of inflammation. Biochemistry 37, 6864–6873 (1998)

    Article  CAS  Google Scholar 

  43. O’Brien, P. J., Siraki, A. G. & Shangari, N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit. Rev. Toxicol. 35, 609–662 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Grompe for Fancd2 knockout mice, J. Sale and S. Takeda for DT40 strains, N. Sugimura and F. Gergely for comments on the manuscript. We are grateful to T. Langford, R. Berks, V. Smith, J. Wiles, C. Shepherd, M. Kidd, M. Brown, A. Mead, R. Pannell, J. Garaycoechea and A. Shortland for their assistance with animal experiments and husbandry. We thank N. Grant and P. Banks from the Visual Aids department for photographic images and W. Zhao of the Human Research Tissue Bank (NIHR Cambridge Biomedical Research Centre) for processing histology. F.L. and I.V.R. are funded by the Children’s Leukaemia Trust and Fanconi Anaemia Research Fund, respectively. K.J.P. acknowledges M. Neuberger, N. McIntyre and C. Desai for support.

Author information

Authors and Affiliations

Authors

Contributions

K.J.P., F.L. and G.P.C. designed the experiments. F.L. and G.P.C. performed the majority of the experimental work, I.V.R. contributed to DT40 clonogenic assays and FACS analysis of tumours. M.J.A. carried out histological analysis. K.J.P. wrote the manuscript assisted by F.L. and G.P.C.

Corresponding author

Correspondence to Ketan J. Patel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

The file contains Supplementary Figures 1-8 with legends. (PDF 2408 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langevin, F., Crossan, G., Rosado, I. et al. Fancd2 counteracts the toxic effects of naturally produced aldehydes in mice. Nature 475, 53–58 (2011). https://doi.org/10.1038/nature10192

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10192

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer