Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila

Abstract

RNA interference (RNAi) pathways have evolved as important modulators of gene expression that operate in the cytoplasm by degrading RNA target molecules through the activity of short (21–30 nucleotide) RNAs1,2,3,4,5,6. RNAi components have been reported to have a role in the nucleus, as they are involved in epigenetic regulation and heterochromatin formation7,8,9,10. However, although RNAi-mediated post-transcriptional gene silencing is well documented, the mechanisms of RNAi-mediated transcriptional gene silencing and, in particular, the role of RNAi components in chromatin dynamics, especially in animal multicellular organisms, are elusive. Here we show that the key RNAi components Dicer 2 (DCR2) and Argonaute 2 (AGO2) associate with chromatin (with a strong preference for euchromatic, transcriptionally active, loci) and interact with the core transcription machinery. Notably, loss of function of DCR2 or AGO2 showed that transcriptional defects are accompanied by the perturbation of RNA polymerase II positioning on promoters. Furthermore, after heat shock, both Dcr2 and Ago2 null mutations, as well as missense mutations that compromise the RNAi activity, impaired the global dynamics of RNA polymerase II. Finally, the deep sequencing of the AGO2-associated small RNAs (AGO2 RIP-seq) revealed that AGO2 is strongly enriched in small RNAs that encompass the promoter regions and other regions of heat-shock and other genetic loci on both the sense and antisense DNA strands, but with a strong bias for the antisense strand, particularly after heat shock. Taken together, our results show that DCR2 and AGO2 are globally associated with transcriptionally active loci and may have a pivotal role in shaping the transcriptome by controlling the processivity of RNA polymerase II.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNA Pol II promoter-proximal pausing on Hsp70 is decreased in cells treated with Dcr2 RNAi.
Figure 2: Chromatin localization of RNA Pol II and AGO2 after heat shock.
Figure 3: DCR2 and the RNAi effector protein AGO2 associate with RNA Pol II and NELF-E.
Figure 4: Features of AGO2-associated small RNAs.

Similar content being viewed by others

Accession codes

Data deposits

Sequence data have been deposited in the DNA Data Bank of Japan under accession code DRA000418.

References

  1. Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655–1666 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69–81 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Kawamura, Y. et al. Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453, 793–797 (2008)

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Ghildiyal, M. et al. Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320, 1077–1081 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. Czech, B. et al. An endogenous small interfering RNA pathway in Drosophila. Nature 453, 798–802 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  6. Okamura, K. et al. The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453, 803–806 (2008)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  7. Allshire, R. C. & Karpen, G. H. Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nature Rev. Genet. 9, 923–937 (2008)

    Article  PubMed  CAS  Google Scholar 

  8. Malone, C. D. & Hannon, G. J. Small RNAs as guardians of the genome. Cell 136, 656–668 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Moazed, D. Small RNAs in transcriptional gene silencing and genome defence. Nature 457, 413–420 (2009)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  10. Teixeira, F. K. et al. A role for RNAi in the selective correction of DNA methylation defects. Science 323, 1600–1604 (2009)

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Llano, M. et al. Identification and characterization of the chromatin-binding domains of the HIV-1 integrase interactor LEDGF/p75. J. Mol. Biol. 360, 760–773 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837–2848 (2005)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Miyoshi, K., Okada, T. N., Siomi, H. & Siomi, M. C. Characterization of the miRNA–RISC loading complex and miRNA–RISC formed in the Drosophila miRNA pathway. RNA 15, 1282–1291 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Weeks, J. R., Hardin, S. E., Shen, J., Lee, J. M. & Greenleaf, A. L. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Genes Dev. 7, 2329–2344 (1993)

    Article  PubMed  CAS  Google Scholar 

  15. Lis, J. T. Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450, 198–202 (2007)

    Article  ADS  PubMed  CAS  Google Scholar 

  16. Wu, C. H. et al. NELF and DSIF cause promoter proximal pausing on the hsp70 promoter in Drosophila. Genes Dev. 17, 1402–1414 (2003)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Simon, J. A., Sutton, C. A., Lobell, R. B., Glaser, R. L. & Lis, J. T. Determinants of heat shock-induced chromosome puffing. Cell 40, 805–817 (1985)

    Article  PubMed  CAS  Google Scholar 

  18. Boehm, A. K., Saunders, A., Werner, J. & Lis, J. T. Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol. Cell. Biol. 23, 7628–7637 (2003)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee, C. et al. NELF and GAGA factor are linked to promoter-proximal pausing at many genes in Drosophila. Mol. Cell. Biol. 28, 3290–3300 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gilchrist, D. A. et al. NELF-mediated stalling of Pol II can enhance gene expression by blocking promoter-proximal nucleosome assembly. Genes Dev. 22, 1921–1933 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Cai, W. et al. RNA polymerase II-mediated transcription at active loci does not require histone H3S10 phosphorylation in Drosophila. Development 135, 2917–2925 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Lim, D. H., Kim, J., Kim, S., Carthew, R. W. & Lee, Y. S. Functional analysis of dicer-2 missense mutations in the siRNA pathway of Drosophila. Biochem. Biophys. Res. Commun. 371, 525–530 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Kim, K., Lee, Y. S. & Carthew, R. W. Conversion of pre-RISC to holo-RISC by Ago2 during assembly of RNAi complexes. RNA 13, 22–29 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Chambeyron, S. & Bickmore, W. A. Chromatin decondensation and nuclear reorganization of the HoxB locus upon induction of transcription. Genes Dev. 18, 1119–1130 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kim, D. H., Villeneuve, L. M., Morris, K. V. & Rossi, J. J. Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nature Struct. Mol. Biol. 13, 793–797 (2006)

    Article  CAS  Google Scholar 

  26. Kavi, H. H. & Birchler, J. A. Interaction of RNA polymerase II and the small RNA machinery affects heterochromatic silencing in Drosophila. Epigenetics Chromatin 2, 15 (2009)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. El-Shami, M. et al. Reiterated WG/GW motifs form functionally and evolutionarily conserved ARGONAUTE-binding platforms in RNAi-related components. Genes Dev. 21, 2539–2544 (2007)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ghildiyal, M. & Zamore, P. D. Small silencing RNAs: an expanding universe. Nature Rev. Genet. 10, 94–108 (2009)

    Article  PubMed  CAS  Google Scholar 

  29. Hoskins, R. A. et al. Genome-wide analysis of promoter architecture in Drosophila melanogaster. Genome Res. 21, 182–192 (2011)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Lupo, R., Breiling, A., Bianchi, M. E. & Orlando, V. Drosophila chromosome condensation proteins Topoisomerase II and Barren colocalise with Polycomb and maintain Fab-7 PRE silencing. Mol. Cell 7, 127–136 (2001)

    Article  PubMed  CAS  Google Scholar 

  31. Breiling, A., Turner, B. M., Bianchi, M. E. & Orlando, V. General transcription factors bind promoters repressed by Polycomb group proteins. Nature 412, 651–655 (2001)

    Article  ADS  PubMed  CAS  Google Scholar 

  32. Stock, J. K. et al. Ring1-mediated ubiquitination of H2A restrains poised RNA polymerase II at bivalent genes in mouse ES cells. Nature Cell Biol. 9, 1428–1435 (2007)

    Article  PubMed  CAS  Google Scholar 

  33. Messmer, S., Franke, A. & Paro, R. Analysis of the functional role of the Polycomb chromo domain in Drosophila melanogaster. Genes Dev. 6, 1241–1254 (1992)

    Article  PubMed  CAS  Google Scholar 

  34. Hsu, J. Y. et al. TBP, Mot1, and NC2 establish a regulatory circuit that controls DPE-dependent versus TATA-dependent transcription. Genes Dev. 22, 2353–2358 (2008)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Liu, Q. et al. R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301, 1921–1925 (2003)

    Article  ADS  PubMed  Google Scholar 

  36. Breiling, A., O’Neill, L. P., D’Eliseo, D., Turner, B. M. & Orlando, V. Epigenome changes in active and inactive Polycomb-group-controlled regions. EMBO Rep. 5, 976–982 (2004)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pimpinelli, S., Bonaccorsi, S., Fanti, L. & Gatti, M. in Drosophila: A Laboratory Manual (eds Sullivan, W., Ashburner, M. & Hawley, S. ) 1–24 (Cold Spring Harbor Laboratory Press, 2000)

    Google Scholar 

  38. Corona, D. F., Armstrong, J. A. & Tamkun, J. W. Genetic and cytological analysis of Drosophila chromatin-remodeling factors. Methods Enzymol. 377, 70–85 (2004)

    Article  PubMed  CAS  Google Scholar 

  39. Cartwright, I. L. et al. Analysis of Drosophila chromatin structure in vivo. Methods Enzymol. 304, 462–496 (1999)

    Article  PubMed  CAS  Google Scholar 

  40. Kawano, M. et al. Reduction of non-insert sequence reads by dimer eliminator LNA oligonucleotide for small RNA deep sequencing. Biotechniques 49, 751–755 (2010)

    Article  PubMed  CAS  Google Scholar 

  41. de Hoon, M. J. et al. Cross-mapping and the identification of editing sites in mature microRNAs in high-throughput sequencing libraries. Genome Res. 20, 257–264 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Tweedie, S. et al. FlyBase: enhancing Drosophila Gene Ontology annotations. Nucleic Acids Res. 37, D555–D559 (2009)

    Article  PubMed  CAS  Google Scholar 

  43. Mituyama, T. Y. K. et al. The Functional RNA Database 3.0: databases to support mining and annotation of functional RNAs. Nucleic Acids Res. 37, D89–D92 (2009)

    Article  PubMed  CAS  Google Scholar 

  44. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are deeply grateful to P. Macino for discussions. We also thank R. Carthew, E. Lai, Q. Liu, R. Paro, Y. Sik Lee, and J. T. Kadonaga for reagents. This work was supported by grants from the following: the National Institutes of Health (GM47477) to D.S.G.; the Deutsche Forschungsgemeinschaft (SPP 1356) to A.B.; the Japan Society for the Promotion of Science (JSPS) through the ‘Funding Program for Next Generation World-Leading Researchers’ (NEXT Program) (a Grant-in-Aid for Scientific Research (A) No. 20241047) and the Council for Science and Technology Policy to P.C.; the NEXT Program (a Research Grant-in-Aid to the RIKEN OSC) to K.M., M.C.S. and H.S.; Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency to M.C.S.; Fondazione Telethon, the Giovanni Armenise Harvard Foundation, FIRB-MIUR, Associazione Italiana Ricerca Cancro (AIRC), the Human Frontier Science Program CDA and the EMBO Young investigator program to D.F.V.C.; Fondazione Telethon, AIRC and the EU FP6 Epigenome Network of Excellence to V.O. This work was also made possible with the contribution of the Italian Ministry of Foreign Affairs, ‘Direzione Generale per la Promozione e la Cooperazione Culturale’ to V.O. A.S. is supported by a JSPS fellowship (ID P09745). Sequencing was provided by the Genas service (RIKEN Omics Science Center).

Author information

Authors and Affiliations

Authors

Contributions

F.M.C. and V.O. conceived the study. F.M.C. and A.B. performed the ChIP experiments. F.M.C. and K.M.P. carried out the chromatin fractionation assays and the western blotting. F.M.C. carried out the quantitative RT–PCR on S2 cells. K.M.P. and F.L.S. performed the quantitative RT–PCR on mutant larvae prepared by M.C.O. F.M.C. performed the co-immunoprecipitations and contributed reagents for the chromosome and permanganate footprinting experiments. M.C.O. performed the polytene chromosome experiments. G.O.K. and D.S.G. performed the permanganate footprinting experiments. A.M.B. performed the bioinformatic analysis. A.S. and P.C. performed the deep sequencing. K.M., H.S. and M.C.S. performed the purification of the AGO2-associated small RNAs. F.M.C., M.C.O., D.S.G., D.F.V.C. and V.O. designed the experiments and interpreted the results. F.M.C., D.S.G., D.F.V.C. and V.O. wrote the manuscript with the contribution of M.C.O., A.B. and A.M.B., as well as input from the other co-authors.

Corresponding author

Correspondence to Valerio Orlando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-14 with legends, Supplementary Tables 1-4 and 6 (see separate file for table 5), a Supplementary Discussion and Supplementary References. (PDF 9375 kb)

Supplementary Table 5

The table shows tags mapping to heat shock loci. (XLS 4184 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cernilogar, F., Onorati, M., Kothe, G. et al. Chromatin-associated RNA interference components contribute to transcriptional regulation in Drosophila. Nature 480, 391–395 (2011). https://doi.org/10.1038/nature10492

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10492

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing