Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1

Abstract

Repair of DNA double-strand breaks (DSBs) by homologous recombination requires resection of 5′-termini to generate 3′-single-strand DNA tails1. Key components of this reaction are exonuclease 1 and the bifunctional endo/exonuclease, Mre11 (refs 2–4). Mre11 endonuclease activity is critical when DSB termini are blocked by bound protein—such as by the DNA end-joining complex5, topoisomerases6 or the meiotic transesterase Spo11 (refs 7–13)—but a specific function for the Mre11 3′–5′ exonuclease activity has remained elusive. Here we use Saccharomyces cerevisiae to reveal a role for the Mre11 exonuclease during the resection of Spo11-linked 5′-DNA termini in vivo. We show that the residual resection observed in Exo1-mutant cells is dependent on Mre11, and that both exonuclease activities are required for efficient DSB repair. Previous work has indicated that resection traverses unidirectionally1. Using a combination of physical assays for 5′-end processing, our results indicate an alternative mechanism involving bidirectional resection. First, Mre11 nicks the strand to be resected up to 300 nucleotides from the 5′-terminus of the DSB—much further away than previously assumed. Second, this nick enables resection in a bidirectional manner, using Exo1 in the 5′–3′ direction away from the DSB, and Mre11 in the 3′–5′ direction towards the DSB end. Mre11 exonuclease activity also confers resistance to DNA damage in cycling cells, suggesting that Mre11-catalysed resection may be a general feature of various DNA repair pathways.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mre11- and Exo1-dependent resection and repair of meiotic DSBs.
Figure 2: Mre11-exonucleolytic processing of DSB ends.
Figure 3: DNA damage sensitivity of exonuclease-defective Mre11 cells.
Figure 4: Model for bidirectional processing of DSBs by Mre11 and Exo1.

Similar content being viewed by others

References

  1. Paques, F. & Haber, J. E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349 (1999)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Mimitou, E. P. & Symington, L. S. Sae2, Exo1 and Sgs1 collaborate in DNA double-strand break processing. Nature 455, 770–774 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Nicolette, M. L. et al. Mre11–Rad50–Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nature Struct. Mol. Biol. 17, 1478–1485 (2010)

    Article  CAS  Google Scholar 

  4. Zhu, Z., Chung, W. H., Shim, E. Y., Lee, S. E. & Ira, G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134, 981–994 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mimitou, E. P. & Symington, L. S. Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J. 29, 3358–3369 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hartsuiker, E., Neale, M. J. & Carr, A. M. Distinct requirements for the Rad32(Mre11) nuclease and Ctp1(CtIP) in the removal of covalently bound topoisomerase I and II from DNA. Mol. Cell 33, 117–123 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Furuse, M. et al. Distinct roles of two separable in vitro activities of yeast Mre11 in mitotic and meiotic recombination. EMBO J. 17, 6412–6425 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hartsuiker, E. et al. Ctp1CtIP and Rad32Mre11 nuclease activity are required for Rec12Spo11 removal, but Rec12Spo11 removal is dispensable for other MRN-dependent meiotic functions. Mol. Cell. Biol. 29, 1671–1681 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Milman, N., Higuchi, E. & Smith, G. R. Meiotic DNA double-strand break repair requires two nucleases, MRN and Ctp1, to produce a single size class of Rec12 (Spo11)-oligonucleotide complexes. Mol. Cell. Biol. 29, 5998–6005 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moreau, S., Ferguson, J. R. & Symington, L. S. The nuclease activity of Mre11 is required for meiosis but not for mating type switching, end joining, or telomere maintenance. Mol. Cell. Biol. 19, 556–566 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nairz, K. & Klein, F. mre11S—a yeast mutation that blocks double-strand-break processing and permits nonhomologous synapsis in meiosis. Genes Dev. 11, 2272–2290 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rothenberg, M., Kohli, J. & Ludin, K. Ctp1 and the MRN-complex are required for endonucleolytic Rec12 removal with release of a single class of oligonucleotides in fission yeast. PLoS Genet. 5, e1000722 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tsubouchi, H. & Ogawa, H. A novel mre11 mutation impairs processing of double-strand breaks of DNA during both mitosis and meiosis. Mol. Cell. Biol. 18, 260–268 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keeney, S. Mechanism and control of meiotic recombination initiation. Curr. Top. Dev. Biol. 52, 1–53 (2001)

    Article  CAS  PubMed  Google Scholar 

  15. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005)

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  16. Williams, R. S. et al. Mre11 dimers coordinate DNA end bridging and nuclease processing in double-strand-break repair. Cell 135, 97–109 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hodgson, A. et al. Mre11 and Exo1 contribute to the initiation and processivity of resection at meiotic double-strand breaks made independently of Spo11. DNA Repair 10, 138–148 (2010)

    Article  CAS  PubMed  Google Scholar 

  18. Keelagher, R. E., Cotton, V. E., Goldman, A. S. & Borts, R. H. Separable roles for Exonuclease I in meiotic DNA double-strand break repair. DNA Repair 10, 126–137 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Manfrini, N., Guerini, I., Citterio, A., Lucchini, G. & Longhese, M. P. Processing of meiotic DNA double-strand breaks requires cyclin-dependent kinase and multiple nucleases. J. Biol. Chem. 285, 11628–11637 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tsubouchi, H. & Ogawa, H. Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol. Biol. Cell 11, 2221–2233 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zakharyevich, K. et al. Temporally and biochemically distinct activities of Exo1 during meiosis: double-strand break resection and resolution of double holliday junctions. Mol. Cell 40, 1001–1015 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carballo, J. A., Johnson, A. L., Sedgwick, S. G. & Cha, R. S. Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132, 758–770 (2008)

    Article  CAS  PubMed  Google Scholar 

  23. Usui, T., Ogawa, H. & Petrini, J. H. A. DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7, 1255–1266 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Szankasi, P. & Smith, G. R. A. DNA exonuclease induced during meiosis of Schizosaccharomyces pombe. J. Biol. Chem. 267, 3014–3023 (1992)

    CAS  PubMed  Google Scholar 

  25. Paull, T. T. & Gellert, M. The 3′ to 5′ exonuclease activity of Mre11 facilitates repair of DNA double-strand breaks. Mol. Cell 1, 969–979 (1998)

    Article  CAS  PubMed  Google Scholar 

  26. Pan, J. et al. A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation. Cell 144, 719–731 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jazayeri, A., Balestrini, A., Garner, E., Haber, J. E. & Costanzo, V. Mre11–Rad50–Nbs1-dependent processing of DNA breaks generates oligonucleotides that stimulate ATM activity. EMBO J. 27, 1953–1962 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lange, J. et al. ATM controls meiotic double-strand-break formation. Nature 10.1038/nature10508 (this issue).

  29. Hunter, N. & Kleckner, N. The single-end invasion: an asymmetric intermediate at the double-strand break to double-holliday junction transition of meiotic recombination. Cell 106, 59–70 (2001)

    Article  CAS  PubMed  Google Scholar 

  30. Kim, K. P. et al. Sister cohesion and structural axis components mediate homolog bias of meiotic recombination. Cell 143, 924–937 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Panizza, S. et al. Spo11-accessory proteins link double-strand break sites to the chromosome axis in early meiotic recombination. Cell 146, 372–383 (2011)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Cha, E. Hoffmann, N. Hunter, S. Keeney and J. Nitiss for yeast strains; L. Symington for plasmids; F. Klein and J. Petrini for antisera. V.G. is supported by an MRC New Investigator Grant to M.J.N. M.J.N. is supported by a University Research Fellowship from the Royal Society and a Career Development Award from the Human Frontiers Science Program Organisation.

Author information

Authors and Affiliations

Authors

Contributions

V.G. and M.J.N. designed the experiments and wrote the paper. V.G. and M.J.N. performed the experiments with technical support from S.E.L.P. and S.G.

Corresponding author

Correspondence to Matthew J. Neale.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-10 with legends and additional references. (PDF 5963 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcia, V., Phelps, S., Gray, S. et al. Bidirectional resection of DNA double-strand breaks by Mre11 and Exo1. Nature 479, 241–244 (2011). https://doi.org/10.1038/nature10515

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10515

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing