Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation

Abstract

Homologous recombination is a high-fidelity DNA repair pathway. Besides a critical role in accurate chromosome segregation during meiosis, recombination functions in DNA repair and in the recovery of stalled or broken replication forks to ensure genomic stability. In contrast, inappropriate recombination contributes to genomic instability, leading to loss of heterozygosity, chromosome rearrangements and cell death. The RecA/UvsX/RadA/Rad51 family of proteins catalyses the signature reactions of recombination, homology search and DNA strand invasion1,2. Eukaryotes also possess Rad51 paralogues, whose exact role in recombination remains to be defined3. Here we show that the Saccharomyces cerevisiae Rad51 paralogues, the Rad55–Rad57 heterodimer, counteract the antirecombination activity of the Srs2 helicase. The Rad55–Rad57 heterodimer associates with the Rad51–single-stranded DNA filament, rendering it more stable than a nucleoprotein filament containing Rad51 alone. The Rad51–Rad55–Rad57 co-filament resists disruption by the Srs2 antirecombinase by blocking Srs2 translocation, involving a direct protein interaction between Rad55–Rad57 and Srs2. Our results demonstrate an unexpected role of the Rad51 paralogues in stabilizing the Rad51 filament against a biologically important antagonist, the Srs2 antirecombination helicase. The biological significance of this mechanism is indicated by a complete suppression of the ionizing radiation sensitivity of rad55 or rad57 mutants by concomitant deletion of SRS2, as expected for biological antagonists. We propose that the Rad51 presynaptic filament is a meta-stable reversible intermediate, whose assembly and disassembly is governed by the balance between Rad55–Rad57 and Srs2, providing a key regulatory mechanism controlling the initiation of homologous recombination. These data provide a paradigm for the potential function of the human RAD51 paralogues, which are known to be involved in cancer predisposition and human disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rad55–Rad57 is associated with and stabilizes Rad51–ssDNA filaments.
Figure 2: Rad55–Rad57 stabilize Rad51–ssDNA filaments to resist disruption by Srs2.
Figure 3: Rad55–Rad57 inhibit disruption of Rad51 presynaptic filaments by Srs2.
Figure 4: Rad55–Rad57 interact with Srs2 and inhibit Srs2 helicase.

Similar content being viewed by others

References

  1. Heyer, W. D., Ehmsen, K. T. & Liu, J. Regulation of homologous recombination in eukaryotes. Annu. Rev. Genet. 44, 113–139 (2010)

    Article  CAS  Google Scholar 

  2. Symington, L. S. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66, 630–670 (2002)

    Article  CAS  Google Scholar 

  3. Thacker, J. The RAD51 gene family, genetic instability and cancer. Cancer Lett. 219, 125–135 (2005)

    Article  CAS  Google Scholar 

  4. Sung, P. Yeast Rad55 and Rad57 proteins form a heterodimer that functions with replication protein A to promote DNA strand exchange by Rad51 recombinase. Genes Dev. 11, 1111–1121 (1997)

    Article  CAS  Google Scholar 

  5. Lovett, S. T. & Mortimer, R. K. Characterization of null mutants of the RAD55 gene of Saccharomyces cerevisiae: effects of temperature, osmotic strength and mating type. Genetics 116, 547–553 (1987)

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Beernink, H. T. H. & Morrical, S. W. RMPs: recombination/replication mediator proteins. Trends Biochem. Sci. 24, 385–389 (1999)

    Article  CAS  Google Scholar 

  7. Morimatsu, K. & Kowalczykowski, S. C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol. Cell 11, 1337–1347 (2003)

    Article  CAS  Google Scholar 

  8. Liu, J., Doty, T., Gibson, B. & Heyer, W. D. Human BRCA2 protein promotes RAD51 filament formation on RPA-covered single-stranded DNA. Nature Struct. Mol. Biol. 17, 1260–1262 (2010)

    Article  CAS  Google Scholar 

  9. Jensen, R. B., Carreira, A. & Kowalczykowski, S. C. Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678–683 (2010)

    Article  CAS  ADS  Google Scholar 

  10. Lisby, M., Barlow, J. H., Burgess, R. C. & Rothstein, R. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118, 699–713 (2004)

    Article  CAS  Google Scholar 

  11. Schiestl, R. H., Prakash, S. & Prakash, L. The SRS2 suppressor of rad6 mutations of Saccharomyces cerevisiae acts by channeling DNA lesions into the RAD52 DNA repair pathway. Genetics 124, 817–831 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Aboussekhra, A. et al. RADH, a gene of Saccharomyces cerevisiae encoding a putative DNA helicase involved in DNA repair. Characteristics of radH mutants and sequence of the gene. Nucleic Acids Res. 17, 7211–7219 (1989)

    Article  CAS  Google Scholar 

  13. Aguilera, A. & Klein, H. L. Genetic control of intrachromosomal recombination in Saccharomyces cerevisiae. I. Isolation and genetic characterization of hyper-recombination mutations. Genetics 119, 779–790 (1988)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Krejci, L. et al. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature 423, 305–309 (2003)

    Article  CAS  ADS  Google Scholar 

  15. Veaute, X. et al. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature 423, 309–312 (2003)

    Article  CAS  ADS  Google Scholar 

  16. Antony, E. et al. Srs2 disassembles Rad51 filaments by a protein-protein interaction triggering ATP turnover and dissociation of Rad51 from DNA. Mol. Cell 35, 105–115 (2009)

    Article  CAS  Google Scholar 

  17. Dupaigne, P. et al. The Srs2 helicase activity is stimulated by Rad51 filaments on dsDNA: implications for crossover incidence during mitotic recombination. Mol. Cell 29, 243–254 (2008)

    Article  CAS  Google Scholar 

  18. Hilario, J., Amitani, I., Baskin, R. J. & Kowalczykowski, S. C. Direct imaging of human Rad51 nucleoprotein dynamics on individual DNA molecules. Proc. Natl Acad. Sci. USA 106, 361–368 (2009)

    Article  CAS  ADS  Google Scholar 

  19. Modesti, M. et al. Fluorescent human RAD51 reveals multiple nucleation sites and filament segments tightly associated along a single DNA molecule. Structure 15, 599–609 (2007)

    Article  CAS  Google Scholar 

  20. Fung, C. W., Mozlin, A. M. & Symington, L. S. Suppression of the double-strand-break-repair defect of the Saccharomyces cerevisiae rad57 mutant. Genetics 181, 1195–1206 (2009)

    Article  CAS  Google Scholar 

  21. Herzberg, K. et al. Phosphorylation of Rad55 on serines 2, 8, and 14 is required for efficient homologous recombination in the recovery of stalled replication forks. Mol. Cell. Biol. 26, 8396–8409 (2006)

    Article  CAS  Google Scholar 

  22. Saponaro, M. et al. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet. 6, e1000858 (2010)

    Article  Google Scholar 

  23. Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123–133 (2005)

    Article  CAS  Google Scholar 

  24. Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428–433 (2005)

    Article  CAS  ADS  Google Scholar 

  25. Burgess, R. C. et al. Localization of recombination proteins and Srs2 reveals anti-recombinase function in vivo. J. Cell Biol. 185, 969–981 (2009)

    Article  CAS  Google Scholar 

  26. Meindl, A. et al. Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nature Genet. 42, 410–414 (2010)

    Article  CAS  Google Scholar 

  27. Hu, Y. et al. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev. 21, 3073–3084 (2007)

    Article  CAS  Google Scholar 

  28. Bugreev, D. V., Yu, X., Egelman, E. H. & Mazin, A. V. Novel pro- and anti-recombination activities of the Bloom’s syndrome helicase. Genes Dev. 21, 3085–3094 (2007)

    Article  CAS  Google Scholar 

  29. Sommers, J. A. et al. FANCJ uses its motor ATPase to destabilize protein-DNA complexes, unwind triplexes, and inhibit RAD51 strand exchange. J. Biol. Chem. 284, 7505–7517 (2009)

    Article  CAS  Google Scholar 

  30. Fugger, K. et al. Human Fbh1 helicase contributes to genome maintenance via pro- and anti-recombinase activities. J. Cell Biol. 186, 655–663 (2009)

    Article  CAS  Google Scholar 

  31. Solinger, J. A., Kiianitsa, K. & Heyer, W.-D. Rad54, a Swi2/Snf2-like recombinational repair protein, disassembles Rad51:dsDNA filaments. Mol. Cell 10, 1175–1188 (2002)

    Article  CAS  Google Scholar 

  32. Bashkirov, V. I., Herzberg, K., Haghnazari, E., Vlasenko, A. S. & Heyer, W. D. DNA-damage induced phosphorylation of Rad55 protein as a sentinel for DNA damage checkpoint activation in S. cerevisiae. Methods Enzymol. 409, 166–182 (2006)

    Article  CAS  Google Scholar 

  33. Zhang, X. P. & Heyer, W. D. Quality control of purified proteins involved in homologous recombination. Methods Mol. Biol. 745, 329–343 (2011)

    Article  CAS  Google Scholar 

  34. Mazin, A. V., Alexeev, A. A. & Kowalczykowski, S. C. A novel function of Rad54 protein - Stabilization of the Rad51 nucleoprotein filament. J. Biol. Chem. 278, 14029–14036 (2003)

    Article  CAS  Google Scholar 

  35. Wolner, B., van Komen, S., Sung, P. & Peterson, C. L. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol. Cell 12, 221–232 (2003)

    Article  CAS  Google Scholar 

  36. Schwendener, S. et al. Physical interaction of RECQ5 helicase with RAD51 facilitates its anti-recombinase activity. J. Biol. Chem. 285, 15739–15745 (2010)

    Article  CAS  Google Scholar 

  37. Van Dyck, E., Hajibagheri, N. M., Stasiak, A. & West, S. C. Visualisation of human RAD52 protein and its complexes with hRad51 and DNA. J. Mol. Biol. 284, 1027–1038 (1998)

    Article  CAS  Google Scholar 

  38. Lea, D. E. & Coulson, C. A. The distribution of the numbers of mutants in bacterial populations. J. Genet. 49, 264–285 (1949)

    Article  CAS  Google Scholar 

  39. Spell, R. M. & Jinks-Robertson, S. Determination of mitotic recombination rates by fluctuation analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 262, 3–12 (2004)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Alexeeva for the cell culture support. We thank P. Sung, R. Kolodner and L. Symington for plasmids and yeast strains. We are grateful to S. Kowalczykowski, N. Hunter, D. Castaño-Diez, P. Ringler and all members of the Heyer laboratory for discussions and comments on the manuscript. This work was supported by Postdoctoral Fellowship 17FT-0046 from the Tobacco-Related Disease Research Program (J.L.), by the European Community (LSHG-CT-2003-503303) and the Centre National de la Recherche Scientifique, the Commissariat à l'Energie Atomique (X.V., F.F.), by SystemsX.ch (H.S.), and the National Institutes of Health grants U54GM74929 (H.S.), CA92267 and GM58015 (W.-D.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.L. designed, performed and analysed all experiments, except the ionizing radiation survival assay, and helped write the manuscript. L.R. helped with the electron microscopy image collection and data analysis. X.V. purified the Srs2 protein. F.F. performed the ionizing radiation experiment. H.S. advised on the electron microscopy analysis. W.-D.H. conceived the project, designed experiments, coordinated collaborations, contributed to data analysis and wrote the manuscript. All authors discussed results and edited the manuscript.

Corresponding author

Correspondence to Wolf-Dietrich Heyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2, Supplementary Figures 1-14 with legends and additional references. (PDF 10933 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Renault, L., Veaute, X. et al. Rad51 paralogues Rad55–Rad57 balance the antirecombinase Srs2 in Rad51 filament formation. Nature 479, 245–248 (2011). https://doi.org/10.1038/nature10522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10522

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer