Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Molecular mechanism of ATP binding and ion channel activation in P2X receptors

This article has been updated

Abstract

P2X receptors are trimeric ATP-activated ion channels permeable to Na+, K+ and Ca2+. The seven P2X receptor subtypes are implicated in physiological processes that include modulation of synaptic transmission, contraction of smooth muscle, secretion of chemical transmitters and regulation of immune responses. Despite the importance of P2X receptors in cellular physiology, the three-dimensional composition of the ATP-binding site, the structural mechanism of ATP-dependent ion channel gating and the architecture of the open ion channel pore are unknown. Here we report the crystal structure of the zebrafish P2X4 receptor in complex with ATP and a new structure of the apo receptor. The agonist-bound structure reveals a previously unseen ATP-binding motif and an open ion channel pore. ATP binding induces cleft closure of the nucleotide-binding pocket, flexing of the lower body β-sheet and a radial expansion of the extracellular vestibule. The structural widening of the extracellular vestibule is directly coupled to the opening of the ion channel pore by way of an iris-like expansion of the transmembrane helices. The structural delineation of the ATP-binding site and the ion channel pore, together with the conformational changes associated with ion channel gating, will stimulate development of new pharmacological agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The architectures of zebrafish P2X4.
Figure 2: Analysis of conformational difference between ΔP2X4-C and ΔP2X4-B2.
Figure 3: ATP-binding site.
Figure 4: The transmembrane pore.
Figure 5: Structural transitions in the transmembrane domain.
Figure 6: Mechanism of activation.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The coordinates and structure factors for the zebrafish apo DP2X4-B2 and ATP-bound DP2X4-C have been deposited in the Protein Data Bank under the accession codes 4DW0 and 4DW1, respectively.

Change history

  • 09 May 2012

    A typographical error was corrected in the abstract; an addition was made to Acknowledgements.

References

  1. Burnstock, G. Purinergic nerves. Pharmacol. Rev. 24, 509–581 (1972)

    CAS  PubMed  Google Scholar 

  2. Valera, S. et al. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature 371, 516–519 (1994)

    Article  ADS  CAS  Google Scholar 

  3. Webb, T. E. et al. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Lett. 324, 219–225 (1993)

    Article  CAS  Google Scholar 

  4. Surprenant, A. & North, R. A. Signaling at purinergic P2X receptors. Annu. Rev. Physiol. 71, 333–359 (2009)

    Article  CAS  Google Scholar 

  5. Burnstock, G. & Kennedy, C. P2X receptors in health and disease. Adv. Pharmacol. 61, 333–372 (2011)

    Article  CAS  Google Scholar 

  6. Coddou, C., Yan, Z., Obsil, T., Huidobro-Toro, J. P. & Stojikovic, S. S. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63, 641–683 (2011)

    Article  CAS  Google Scholar 

  7. North, R. A. Molecular physiology of P2X receptors. Physiol. Rev. 82, 1013–1067 (2002)

    Article  CAS  Google Scholar 

  8. Nicke, A. et al. P2X1 and P2X3 receptors form stable trimers: a novel structural motif of ligand-gated ion channels. EMBO J. 17, 3016–3028 (1998)

    Article  CAS  Google Scholar 

  9. Aschrafi, A., Sadtler, S., Niculescu, C., Rettinger, J. & Schmalzing, G. Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342, 333–343 (2004)

    Article  CAS  Google Scholar 

  10. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994)

    Article  ADS  CAS  Google Scholar 

  11. Browne, L. E., Jiang, L. H. & North, R. A. New structure enlivens interest in P2X receptors. Trends Pharmacol. Sci. 31, 229–237 (2010)

    Article  CAS  Google Scholar 

  12. Khakh, B. S., Bao, X. R., Labarca, C. & Lester, H. A. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nature Neurosci. 2, 322–330 (1999)

    Article  CAS  Google Scholar 

  13. Virginio, C., MacKenzie, A., Rassendren, F. A., North, R. A. & Surprenant, A. Pore dilation of neuronal P2X receptor channels. Nature Neurosci. 2, 315–321 (1999)

    Article  CAS  Google Scholar 

  14. Jarvis, M. F. & Khakh, B. S. ATP-gated P2X cation-channels. Neuropharmacology 56, 208–215 (2009)

    Article  CAS  Google Scholar 

  15. Kucenas, S., Li, Z., Cox, J. A., Egan, T. M. & Voigt, M. M. Molecular characterization of the zebrafish P2X receptor subunit gene family. Neuroscience 121, 935–945 (2003)

    Article  CAS  Google Scholar 

  16. Kawate, T., Michel, J. C., Birdsong, W. T. & Gouaux, E. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460, 592–598 (2009)

    Article  ADS  CAS  Google Scholar 

  17. Jiang, L. H., Rassendren, F., Surprenant, A. & North, R. A. Identification of amino acid reisdues contributing to the ATP-binding site of a purinergic P2X receptor. J. Biol. Chem. 275, 34190–34196 (2000)

    Article  CAS  Google Scholar 

  18. Ennion, S., Hagan, S. & Evans, R. J. The role of positively charged amino acids in ATP recognition by human P2X1 receptors. J. Biol. Chem. 275, 29361–29367 (2000)

    Article  CAS  Google Scholar 

  19. Marquez-Klaka, B., Rettinger, J., Bhargava, Y., Eisele, T. & Nicke, A. Identification of an intersubunit cross-link between substituted cysteine residues located in the putative ATP binding site of the P2X1 receptor. J. Neurosci. 27, 1456–1466 (2007)

    Article  CAS  Google Scholar 

  20. Roberts, J. A. & Evans, R. J. Cysteine substitution mutants give structural insight and identify ATP binding and activation sites at P2X receptors. J. Neurosci. 27, 4072–4082 (2007)

    Article  CAS  Google Scholar 

  21. Roberts, J. A. et al. Cysteine substitution mutagenesis and the effects of methanethiosulfonate reagents at P2X2 and P2X4 receptors support a core common mode of ATP action at P2X receptors. J. Biol. Chem. 283, 20126–20136 (2008)

    Article  CAS  Google Scholar 

  22. Bodnar, M. et al. Amino acid residues constituting the agonist binding site of the human P2X3 receptor. J. Biol. Chem. 286, 2739–2749 (2011)

    Article  CAS  Google Scholar 

  23. Kawate, T. & Gouaux, E. Fluorescence-detection size-exclusion chromatography for precrystallization screening of integral membrane proteins. Structure 14, 673–681 (2006)

    Article  CAS  Google Scholar 

  24. Wilkinson, W. J., Jiang, L. H., Surprenant, A. & North, R. A. Role of ectodomain lysines in the subunits of the heteromeric P2X2/3 receptor. Mol. Pharmacol. 70, 1159–1163 (2006)

    Article  CAS  Google Scholar 

  25. Cavarelli, J. et al. The active site of yeast aspartyl-tRNA synthetase: structural and functional aspects of the aminoacylation reaction. EMBO J. 13, 327–337 (1994)

    Article  CAS  Google Scholar 

  26. Gever, J. R., Cockayne, D. A., Dillon, M. P., Burnstock, G. & Ford, A. P. D. W. Pharmacology of P2X channels. Pflugers Arch. 452, 513–537 (2006)

    Article  CAS  Google Scholar 

  27. Evans, R. J. et al. Pharmacological characterization of heterologously expressed ATP-gated cation channels (P2x purinoceptors). Mol. Pharmacol. 48, 178–183 (1995)

    CAS  PubMed  Google Scholar 

  28. Wildman, S. S., Brown, S. G., King, B. F. & Burnstock, G. Selectivity of diadenosine polyphosphates for rat P2X receptor subunits. Eur. J. Pharmacol. 367, 119–123 (1999)

    Article  CAS  Google Scholar 

  29. Roberts, J. A., Valente, M., Allsopp, R. C., Watt, D. & Evans, R. J. Contribution of the region Glu181 to Val200 of the extracellular loop of the human P2X1 receptor to agonist binding and gating revealed using cysteine scanning mutagenesis. J. Neurochem. 109, 1042–1052 (2009)

    Article  CAS  Google Scholar 

  30. Jiang, R. et al. Agonist trapped in ATP-binding sites of the P2X2 receptor. Proc. Natl Acad. Sci. USA 108, 9066–9071 (2011)

    Article  ADS  CAS  Google Scholar 

  31. Bianchi, B. R. et al. Pharmacological characterization of recombinant human and rat P2X receptor subtypes. Eur. J. Pharmacol. 376, 127–138 (1999)

    Article  CAS  Google Scholar 

  32. Virginio, C., Robertson, G., Surprenant, A. & North, R. A. Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol. Pharmacol. 53, 969–973 (1998)

    CAS  PubMed  Google Scholar 

  33. Soto, F. et al. P2X4: an ATP-activated ionotropic receptor cloned from rat brain. Proc. Natl Acad. Sci. USA 93, 3684–3688 (1996)

    Article  ADS  CAS  Google Scholar 

  34. Garcia-Guzman, M., Soto, F., Gomez-Hernandez, J. M., Lund, P. E. & Stühmer, W. Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol. Pharmacol. 51, 109–118 (1997)

    Article  CAS  Google Scholar 

  35. Egan, T. M., Haines, W. R. & Voigt, M. M. A domain contributing to the ion channel of ATP-gated P2X2 receptors identified by the substituted cysteine accessibility method. J. Neurosci. 18, 2350–2359 (1998)

    Article  CAS  Google Scholar 

  36. Rassendren, F., Buell, G., Newbolt, A., North, R. A. & Surprenant, A. Identification of amino acid residues contributing to the pore of a P2X receptor. EMBO J. 16, 3446–3454 (1997)

    Article  CAS  Google Scholar 

  37. Li, M., Chang, T. H., Silberberg, S. D. & Swartz, K. J. Gating the pore of P2X receptor channels. Nature Neurosci. 11, 883–887 (2008)

    Article  CAS  Google Scholar 

  38. Li, M., Kawate, T., Silberberg, S. D. & Swartz, K. J. Pore-opening mechanism in trimeric P2X receptor channels. Nature Commun. 1, 1–7 (2010)

    Google Scholar 

  39. Kracun, S., Chaptal, V., Abramson, J. & Khakh, B. S. Gated access to the pore of a P2X receptor: structural implications for closed-open transitions. J. Biol. Chem. 285, 10110–10121 (2010)

    Article  CAS  Google Scholar 

  40. Evans, R. J. et al. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. (Lond.) 497, 413–422 (1996)

    Article  CAS  Google Scholar 

  41. Liu, D. M. & Adams, D. J. Ionic selectivity of native ATP-activated (P2X) receptor channels in dissociated neurones from rat parasympathetic ganglia. J. Physiol. (Lond.) 534, 423–435 (2001)

    Article  CAS  Google Scholar 

  42. Villarroel, A., Burnashev, N. & Sakmann, B. Dimensions of the narrow portion of a recombinant NMDA receptor channel. Biophys. J. 68, 866–875 (1995)

    Article  ADS  CAS  Google Scholar 

  43. Migita, K., Haines, W. R., Voigt, M. M. & Egan, T. M. Polar residues of the second transmembrane domain influence cation permeability of the ATP-gated P2X2 receptor. J. Biol. Chem. 276, 30934–30941 (2001)

    Article  CAS  Google Scholar 

  44. Browne, L. E. et al. P2X receptor channels show threefold symmetry in ionic charge selectivity and unitary conductance. Nature Neurosci. 14, 17–18 (2011)

    Article  CAS  Google Scholar 

  45. Kawate, T., Robertson, J. L., Li, M., Silberberg, S. D. & Swartz, K. J. Ion access pathway to the transmembrane pore in P2X receptor channels. J. Gen. Physiol. 137, 579–590 (2011)

    Article  CAS  Google Scholar 

  46. Samways, D. S., Khakh, B. S., Dutertre, S. & Egan, T. M. Preferential use of unobstructed lateral portals as the access route to the pore of human ATP-gated ion channels (P2X receptors). Proc. Natl Acad. Sci. USA 108, 13800–13805 (2011)

    Article  ADS  CAS  Google Scholar 

  47. Fujiwara, Y., Keceli, B., Nakajo, K. & Kubo, Y. Voltage- and [ATP]-dependent gating of the P2X2 ATP receptor channel. J. Gen. Physiol. 133, 93–109 (2009)

    Article  CAS  Google Scholar 

  48. Jelínková, I. et al. Identification of P2X4 receptor-specific residues contributing to the ivermectin effects on channel activation. Biochem. Biophys. Res. Commun. 349, 619–625 (2006)

    Article  Google Scholar 

  49. Silberberg, S. D., Li, M. & Swartz, K. J. Ivermectin interaction with transmembrane helices reveals widespread rearrangements during opening of P2X receptor channels. Neuron 54, 263–274 (2007)

    Article  CAS  Google Scholar 

  50. Khakh, B. S., Proctor, W. R., Dunwiddie, T. V., Labarca, C. & Lester, H. A. Allosteric control of gating and kinetics at P2X4 receptor channels. J. Neurosci. 19, 7289–7299 (1999)

    Article  CAS  Google Scholar 

  51. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997)

    Article  CAS  Google Scholar 

  52. McCoy, A. J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallogr. D 63, 32–41 (2007)

    Article  CAS  Google Scholar 

  53. Collaborative Computational Project, 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994)

    Article  Google Scholar 

  54. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  Google Scholar 

  55. Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D 58, 1948–1954 (2002)

    Article  Google Scholar 

  56. Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283–291 (1993)

    Article  CAS  Google Scholar 

  57. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, 375–383 (2007)

    Article  ADS  Google Scholar 

  58. Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Samsom, M. S. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph. 14, 354–360 (1996)

    Article  CAS  Google Scholar 

  59. Hayward, S. & Lee, R. A. Improvements in the analysis of domain motions in proteins from conformational change: DynDom version 1.50. J. Mol. Graph. Model. 21, 181–183 (2002)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Alexander and D. C. Dawson for providing Xenopus oocytes, K. L. Dürr and T. Friedrich for providing the pCNA3.1x vector, L. Vaskalis for assistance with figure illustrations, K. J. Swartz and M. P. Kavanaugh for advice related to the oocyte experiments, and Gouaux laboratory members for discussions. We are also grateful to the staff at the Advanced Photon Source beamline 24-ID-C for help with X-ray data collection. This work was supported by a Japan Society for the Promotion of Science Postdoctoral Fellowship for Research Abroad (M.H.), and by the American Asthma Foundation (E.G.) and the NIH (E.G.). E.G. is an investigator with the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Contributions

M.H. and E.G. contributed to all aspects of the project.

Corresponding author

Correspondence to Eric Gouaux.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Table 1, Supplementary Figures 1-16 and an additional reference. (PDF 11145 kb)

Supplementary Movie 1

This movie shows the structural conformational changes in the TM region of zfP2X4 between the apo, closed (ΔzfP2X4-B2) and the ATP-bound, open (ΔzfP2X4-C) states, viewed from the intracellular side. The colouring of scheme is the same as Fig 1a. (MOV 6040 kb)

Supplementary Movie 2

This movie shows the structural conformational changes of zfP2X4 between the apo, closed (ΔzfP2X4-B) and the ATP-bound, open (ΔzfP2X4-C) states, viewed perpendicular to the membrane plane. The couloring of scheme of the head (A), dorsal fin (B), left flipper (A), body and TM domains (A, B) is the same as in Fig. 2a. (MOV 7128 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hattori, M., Gouaux, E. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485, 207–212 (2012). https://doi.org/10.1038/nature11010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11010

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing