Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Control of substrate access to the active site in methane monooxygenase

Abstract

Methanotrophs consume methane as their major carbon source and have an essential role in the global carbon cycle by limiting escape of this greenhouse gas to the atmosphere1,2,3. These bacteria oxidize methane to methanol by soluble and particulate methane monooxygenases (MMOs)1,2,3,4. Soluble MMO contains three protein components, a 251-kilodalton hydroxylase (MMOH), a 38.6-kilodalton reductase (MMOR), and a 15.9-kilodalton regulatory protein (MMOB), required to couple electron consumption with substrate hydroxylation at the catalytic diiron centre of MMOH2. Until now, the role of MMOB has remained ambiguous owing to a lack of atomic-level information about the MMOH–MMOB (hereafter termed H–B) complex. Here we remedy this deficiency by providing a crystal structure of H–B, which reveals the manner by which MMOB controls the conformation of residues in MMOH crucial for substrate access to the active site. MMOB docks at the α2β2 interface of α2β2γ2 MMOH, and triggers simultaneous conformational changes in the α-subunit that modulate oxygen and methane access as well as proton delivery to the diiron centre. Without such careful control by MMOB of these substrate routes to the diiron active site, the enzyme operates as an NADH oxidase rather than a monooxygenase5. Biological catalysis involving small substrates is often accomplished in nature by large proteins and protein complexes. The structure presented in this work provides an elegant example of this principle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MMOB induces conformational changes that affect function.
Figure 2: Conformational changes near the diiron centre and pore residues in MMOH after MMOB binding.
Figure 3: Pore closure and cavity opening after MMOH–MMOB complex formation.
Figure 4: Coordination geometry at the diiron active site of MMOH.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Data deposits

Atomic coordinates and structure factors for the crystal structure of the H–B complex have been deposited with the Protein Data Bank under the accession code 4GAM.

References

  1. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996)

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Merkx, M. et al. Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: A tale of two irons and three proteins. Angew. Chem. Int. Ed. Engl. 40, 2782–2807 (2001)

    Article  CAS  PubMed  Google Scholar 

  3. Wallar, B. J. & Lipscomb, J. D. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96, 2625–2658 (1996)

    Article  CAS  PubMed  Google Scholar 

  4. Leahy, J. G., Batchelor, P. J. & Morcomb, S. M. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27, 449–479 (2003)

    Article  CAS  PubMed  Google Scholar 

  5. Gassner, G. T. & Lippard, S. J. Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Biochemistry 38, 12768–12785 (1999)

    Article  CAS  PubMed  Google Scholar 

  6. Elango, N. et al. Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 6, 556–568 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rosenzweig, A. C., Frederick, C. A., Lippard, S. J. & Nordlund, P. Crystal structure of a bacterial non-haem iron hydroxylase that catalyzes the biological oxidation of methane. Nature 366, 537–543 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Shu, L. et al. An Fe2 IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275, 515–518 (1997)

    Article  CAS  PubMed  Google Scholar 

  9. Tinberg, C. E. & Lippard, S. J. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): Evidence for a multi-step, proton-dependent reaction pathway. Biochemistry 48, 12145–12158 (2009)

    Article  CAS  PubMed  Google Scholar 

  10. Whittington, D. A. & Lippard, S. J. Crystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site. J. Am. Chem. Soc. 123, 827–838 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Paulsen, K. E. et al. Oxidation-reduction potentials of the methane monooxygenase hydroxylase component from Methylosinus trichosporium OB3b. Biochemistry 33, 713–722 (1994)

    Article  CAS  PubMed  Google Scholar 

  12. Froland, W. A., Andersson, K. K., Lee, S. K., Liu, Y. & Lipscomb, J. D. Methane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. J. Biol. Chem. 267, 17588–17597 (1992)

    CAS  PubMed  Google Scholar 

  13. Liu, K. E. et al. Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 117, 10174–10185 (1995)

    Article  CAS  Google Scholar 

  14. Liu, Y., Nesheim, J. C., Lee, S. K. & Lipscomb, J. D. Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component. J. Biol. Chem. 270, 24662–24665 (1995)

    Article  CAS  PubMed  Google Scholar 

  15. Bailey, L. J., Mccoy, J. G., Phillips, G. N. & Fox, B. G. Structural consequences of effector protein complex formation in a diiron hydroxylase. Proc. Natl Acad. Sci. USA 105, 19194–19198 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sazinsky, M. H. & Lippard, S. J. Correlating structure with function in bacterial multicomponent monooxygenases and related diiron proteins. Acc. Chem. Res. 39, 558–566 (2006)

    Article  CAS  PubMed  Google Scholar 

  17. Sazinsky, M. H., Dunten, P. W., McCormick, M. S., DiDonato, A. & Lippard, S. J. X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Biochemistry 45, 15392–15404 (2006)

    Article  CAS  PubMed  Google Scholar 

  18. Walters, K. J., Gassner, G. T., Lippard, S. J. & Wagner, G. Structure of the soluble methane monooxygenase regulatory protein B. Proc. Natl Acad. Sci. USA 96, 7877–7882 (1999)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Brandstetter, H., Whittington, D. A., Lippard, S. J. & Frederick, C. A. Mutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Chem. Biol. 6, 441–449 (1999)

    Article  CAS  PubMed  Google Scholar 

  20. Chang, S. L., Wallar, B. J., Lipscomb, J. D. & Mayo, K. H. Residues in Methylosinus trichosporium OB3b methane monooxygenase component B involved in molecular interactions with reduced- and oxidized-hydroxylase component: a role for the N-terminus. Biochemistry 40, 9539–9551 (2001)

    Article  CAS  PubMed  Google Scholar 

  21. Blazyk, J. L., Gassner, G. T. & Lippard, S. J. Intermolecular electron-transfer reactions in soluble methane monooxygenase: A role for hysteresis in protein function. J. Am. Chem. Soc. 127, 17364–17376 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McCormick, M. S. & Lippard, S. J. Analysis of substrate access to active sites in bacterial multicomponent monooxygenase hydroxylases: X-ray crystal structure of xenon-pressurized phenol hydroxylase from Pseudomonas sp OX1. Biochemistry 50, 11058–11069 (2011)

    Article  CAS  PubMed  Google Scholar 

  23. Lee, S. K. & Lipscomb, J. D. Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O-O bond cleavage steps. Biochemistry 38, 4423–4432 (1999)

    Article  CAS  PubMed  Google Scholar 

  24. Song, W. J. et al. Active site threonine facilitates proton transfer during dioxygen activation at the diiron center of toluene/o-xylene monooxygenase hydroxylase. J. Am. Chem. Soc. 132, 13582–13585 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rardin, R. L., Tolman, W. B. & Lippard, S. J. Monodentate carboxylate complexes and the carboxylate shift: Implications for polymetalloprotein structure and function. New J. Chem. 15, 417–430 (1991)

    CAS  Google Scholar 

  26. Whittington, D. A., Rosenzweig, A. C., Frederick, C. A. & Lippard, S. J. Xenon and halogenated alkanes track putative substrate binding cavities in the soluble methane monooxygenase hydroxylase. Biochemistry 40, 3476–3482 (2001)

    Article  CAS  PubMed  Google Scholar 

  27. Whittington, D. A., Sazinsky, M. H. & Lippard, S. J. X-ray crystal structure of alcohol products bound at the active site of soluble methane monooxygenase hydroxylase. J. Am. Chem. Soc. 123, 1794–1795 (2001)

    Article  CAS  PubMed  Google Scholar 

  28. Rosenzweig, A. C. et al. Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): Implications for substrate gating and component interactions. Proteins 29, 141–152 (1997)

    Article  CAS  PubMed  Google Scholar 

  29. Coufal, D. E. et al. Sequencing and analysis of the Methylococcus capsulatus (Bath) soluble methane monooxygenase genes. Eur. J. Biochem. 267, 2174–2185 (2000)

    Article  CAS  PubMed  Google Scholar 

  30. Valentine, A. M., Stahl, S. S. & Lippard, S. J. Mechanistic studies of the reaction of reduced methane monooxygenase hydroxylase with dioxygen and substrates. J. Am. Chem. Soc. 121, 3876–3887 (1999)

    Article  CAS  Google Scholar 

  31. Beauvais, L. G. & Lippard, S. J. Reactions of the peroxo intermediate of soluble methane monooxygenase hydroxylase with ethers. J. Am. Chem. Soc. 127, 7370–7378 (2005)

    Article  CAS  PubMed  Google Scholar 

  32. Liu, K. E., Johnson, C. C., Newcomb, M. & Lippard, S. J. Radical clock substrate probes and kinetic isotope effect studies of the hydroxylation of hydrocarbons by methane monooxygenase. J. Am. Chem. Soc. 115, 939–947 (1993)

    Article  CAS  Google Scholar 

  33. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Evans, P. Scaling and assessment of data quality. Acta Crystallogr. D 62, 72–82 (2006)

    Article  PubMed  Google Scholar 

  35. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    Article  PubMed  Google Scholar 

  37. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant GM 32114 from the National Institute of General Medical Sciences to S. J. Lippard. We thank the staff at the Advanced Light Source beamline 8.2.2. in Lawrence Berkeley National Laboratory for the data collection, S. C. Harrison for resources and comments on the manuscript, and T. C. Johnstone, A. D. Liang and T.-T. Lu for discussions.

Author information

Authors and Affiliations

Authors

Contributions

S. J. Lee designed experiments, purified proteins and measured the enzyme activity, analysed data, and wrote the manuscript; M.S.M. analysed the enzyme cavity, analysed data, prepared figures, and wrote the manuscript; S. J. Lippard directed the project, designed experiments, analysed data, and wrote the manuscript; and U.-S.C. obtained crystals, solved and refined the structures, analysed data, and wrote the manuscript. All authors discussed the results and commented on the manuscripts.

Corresponding authors

Correspondence to Stephen J. Lippard or Uhn-Soo Cho.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-2, Supplementary Figures 1-12 and additional references. (PDF 1559 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., McCormick, M., Lippard, S. et al. Control of substrate access to the active site in methane monooxygenase. Nature 494, 380–384 (2013). https://doi.org/10.1038/nature11880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11880

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing