Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

MicroRNA-mediated species-specific attenuation of influenza A virus

Abstract

Influenza A virus leads to yearly epidemics and sporadic pandemics. Present prophylactic strategies focus on egg-grown, live, attenuated influenza vaccines (LAIVs), in which attenuation is generated by conferring temperature sensitivity onto the virus. Here we describe an alternative approach to attenuating influenza A virus based on microRNA-mediated gene silencing. By incorporating nonavian microRNA response elements (MREs) into the open-reading frame of the viral nucleoprotein, we generate reassortant LAIVs for H1N1 and H5N1 that are attenuated in mice but not in eggs. MRE-based LAIVs show a greater than two-log reduction in mortality compared with control viruses lacking MREs and elicit a diverse antibody response. This approach might be combined with existing LAIVs to increase attenuation and improve vaccine safety.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Influenza A virus infection does not disrupt cellular miRNA function.
Figure 2: Species-specific attenuation of H1N1 and H5N1 influenza A viruses.
Figure 3: Characterization of miRNA-mediated attenuation of influenza A virus.
Figure 4: MRE-containing influenza A viruses as live attenuated vaccines.

Similar content being viewed by others

References

  1. Stohr, K. The global agenda on influenza surveillance and control. Vaccine 21, 1744–1748 (2003).

    Article  Google Scholar 

  2. Neumann, G., Fujii, K., Kino, Y. & Kawaoka, Y. An improved reverse genetics system for influenza A virus generation and its implications for vaccine production. Proc. Natl. Acad. Sci. USA 102, 16825–16829 (2005).

    Article  CAS  Google Scholar 

  3. Ulmer, J.B., Valley, U. & Rappuoli, R. Vaccine manufacturing: challenges and solutions. Nat. Biotechnol. 24, 1377–1383 (2006).

    Article  CAS  Google Scholar 

  4. Brown, B.D., Venneri, M.A., Zingale, A., Sergi Sergi, L. & Naldini, L. Endogenous microRNA regulation suppresses transgene expression in hematopoietic lineages and enables stable gene transfer. Nat. Med. 12, 585–591 (2006).

    Article  CAS  Google Scholar 

  5. Barnes, D., Kunitomi, M., Vignuzzi, M., Saksela, K. & Andino, R. Harnessing endogenous miRNAs to control virus tissue tropism as a strategy for developing attenuated virus vaccines. Cell Host Microbe 4, 239–248 (2008).

    Article  CAS  Google Scholar 

  6. Kelly, E.J., Hadac, E.M., Greiner, S. & Russell, S.J. Engineering microRNA responsiveness to decrease virus pathogenicity. Nat. Med. 14, 1278–1283 (2008).

    Article  CAS  Google Scholar 

  7. Edge, R.E. et al. A let-7 MicroRNA-sensitive vesicular stomatitis virus demonstrates tumor-specific replication. Mol. Ther. 16, 1437–1443 (2008).

    Article  CAS  Google Scholar 

  8. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  Google Scholar 

  9. Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    Article  CAS  Google Scholar 

  10. Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    Article  CAS  Google Scholar 

  11. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  12. Artzi, S., Kiezun, A. & Shomron, N. miRNAminer: a tool for homologous microRNA gene search. BMC Bioinformatics 9, 39 (2008).

    Article  Google Scholar 

  13. Makeyev, E.V., Zhang, J., Carrasco, M.A. & Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell 27, 435–448 (2007).

    Article  CAS  Google Scholar 

  14. Hale, B.G., Randall, R.E., Ortin, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008).

    Article  CAS  Google Scholar 

  15. Kok, K.H. & Jin, D.Y. Influenza A virus NS1 protein does not suppress RNA interference in mammalian cells. J. Gen. Virol. 87, 2639–2644 (2006).

    Article  CAS  Google Scholar 

  16. Palese, P. & Shaw, M. Orthomyxoviridae: the viruses and their replication. in Fields Virology vol. 2, edn. 5 (eds. Knipe, D.M et al.) 1648–1689, (Lippincott Williams and Wilkins, Philadelphia, 2006).

    Google Scholar 

  17. Burnside, J. et al. Deep sequencing of chicken microRNAs. BMC Genomics 9, 185 (2008).

    Article  Google Scholar 

  18. Williams, A.E., Perry, M.M., Moschos, S.A. & Lindsay, M.A. microRNA expression in the aging mouse lung. BMC Genomics 8, 172 (2007).

    Article  Google Scholar 

  19. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  Google Scholar 

  20. Barad, O. et al. MicroRNA expression detected by oligonucleotide microarrays: system establishment and expression profiling in human tissues. Genome Res. 14, 2486–2494 (2004).

    Article  CAS  Google Scholar 

  21. Schickli, J.H. et al. Plasmid-only rescue of influenza A virus vaccine candidates. Philos Trans. R. Soc. Lond. B Biol. Sci. 356, 1965–1973 (2001).

    Article  CAS  Google Scholar 

  22. Hoffmann, H.H., Palese, P. & Shaw, M.L. Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Res. 80, 124–134 (2008).

    Article  CAS  Google Scholar 

  23. Reed, L. & Muench, H. A simple method of estimating fifty percent end points. Am. J. Hyg. 27, 493–497 (1938).

    Google Scholar 

  24. Li, S. et al. Priming with recombinant influenza virus followed by administration of recombinant vaccinia virus induces CD8+ T-cell-mediated protective immunity against malaria. Proc. Natl. Acad. Sci. USA 90, 5214–5218 (1993).

    Article  CAS  Google Scholar 

  25. Shapiro, G.I. & Krug, R.M. Influenza virus RNA replication in vitro: synthesis of viral template RNAs and virion RNAs in the absence of an added primer. J. Virol. 62, 2285–2290 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Quinlivan, M. et al. Attenuation of equine influenza viruses through truncations of the NS1 protein. J. Virol. 79, 8431–8439 (2005).

    Article  CAS  Google Scholar 

  27. Fodor, E. et al. Rescue of influenza A virus from recombinant DNA. J. Virol. 73, 9679–9682 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Park, M.S., Steel, J., Garcia-Sastre, A., Swayne, D. & Palese, P. Engineered viral vaccine constructs with dual specificity: avian influenza and Newcastle disease. Proc. Natl. Acad. Sci. USA 103, 8203–8208 (2006).

    Article  CAS  Google Scholar 

  29. tenOever, B.R. et al. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science 315, 1274–1278 (2007).

    Article  CAS  Google Scholar 

  30. Pall, G.S. & Hamilton, A.J. Improved northern blot method for enhanced detection of small RNA. Nat. Protocols 3, 1077–1084 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported in part by the US Army Research Laboratory and the US Army Research Office under grant number 54677-LS-YIP. J.T.P. is supported by the NYU-MSSM Mechanisms of Virus-Host Interactions National Institutes of Health T32 training grant (no. AI007647-09). B.R.t. is supported in part by the Pew Charitable Funds. We thank A. Garcia-Sastre for giving us polyclonal A/PR/8/34 (MSSM, NY); G. Sen for ISG54 (Cleveland Clinic, OH, USA); A. Fernandez-Sesma (MSSM, NY) for primary human dendritic cell RNA; A. Tarakhovsky (Rockefeller University, NY) and D. O'Carroll (EMBL, Monterotondo, Italy) for Dicer−/− murine fibroblasts; E. Makeyev (Nanyang Technological University, Singapore) for firefly luciferase constructs containing miR-124 MREs and control SV40 3′ UTRs; and P. Palese (MSSM, NY) for pPol-I driven nucleoprotein vector, monoclonal nucleoprotein and A/PR/8/34 NS1. We thank members of the Palese and Garcia-Sastre labs for advice, reagents and comments during the course of this work.

Author information

Authors and Affiliations

Authors

Contributions

J.T.P. and B.R.t. designed and wrote the manuscript. Animal studies were conducted by A.M.P. and M.A.C. Experiments were done by J.T.P., A.M.P. and M.H.L. Cloning and rescue of H5N1 reassortants was done by J.S.

Corresponding author

Correspondence to Benjamin R tenOever.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perez, J., Pham, A., Lorini, M. et al. MicroRNA-mediated species-specific attenuation of influenza A virus. Nat Biotechnol 27, 572–576 (2009). https://doi.org/10.1038/nbt.1542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1542

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing