Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells

Abstract

Induced pluripotent stem cells (iPSCs) have been derived from various somatic cell populations through ectopic expression of defined factors. It remains unclear whether iPSCs generated from different cell types are molecularly and functionally similar. Here we show that iPSCs obtained from mouse fibroblasts, hematopoietic and myogenic cells exhibit distinct transcriptional and epigenetic patterns. Moreover, we demonstrate that cellular origin influences the in vitro differentiation potentials of iPSCs into embryoid bodies and different hematopoietic cell types. Notably, continuous passaging of iPSCs largely attenuates these differences. Our results suggest that early-passage iPSCs retain a transient epigenetic memory of their somatic cells of origin, which manifests as differential gene expression and altered differentiation capacity. These observations may influence ongoing attempts to use iPSCs for disease modeling and could also be exploited in potential therapeutic applications to enhance differentiation into desired cell lineages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: iPSCs derived from different cell types are transcriptionally distinguishable.
Figure 2: iPSCs derived from different cell types exhibit distinguishable epigenetic signatures.
Figure 3: iPSCs derived from different cell types have distinctive in vitro differentiation potentials.
Figure 4: Continuous passaging of iPSCs abrogates transcriptional, epigenetic and functional differences.
Figure 5: Model summarizing the presented data.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Aoi, T. et al. Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321, 699–702 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. Eminli, S. et al. Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat. Genet. 41, 968–976 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eminli, S., Utikal, J., Arnold, K., Jaenisch, R. & Hochedlinger, K. Reprogramming of neural progenitor cells into induced pluripotent stem cells in the absence of exogenous Sox2 expression. Stem Cells 26, 2467–2474 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Hanna, J. et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133, 250–264 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl. Acad. Sci. USA 105, 2883–2888 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, I.H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    Article  CAS  PubMed  Google Scholar 

  7. Stadtfeld, M., Brennand, K. & Hochedlinger, K. Reprogramming of pancreatic beta cells into induced pluripotent stem cells. Curr. Biol. 18, 890–894 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Loh, Y.H. et al. Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–5479 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Maherali, N. et al. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3, 340–345 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Utikal, J., Maherali, N., Kulalert, W. & Hochedlinger, K. Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J. Cell Sci. 122, 3502–3510 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim, J.B. et al. Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454, 646–650 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Shi, Y. et al. A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2, 525–528 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Silva, J. et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 6, e253 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Miura, K. et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27, 743–745 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Ghosh, Z. et al. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PLoS One 5, e8975 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dimos, J.T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Ebert, A.D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Park, I.H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Saha, K. & Jaenisch, R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell 5, 584–595 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wernig, M. et al. A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat. Biotechnol. 26, 916–924 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stadtfeld, M., Maherali, N., Breault, D.T. & Hochedlinger, K. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2, 230–240 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cerletti, M. et al. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134, 37–47 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Stadtfeld, M., Maherali, N., Borkent, M. & Hochedlinger, K. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat. Methods 7, 53–55 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Chin, M.H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Mikkelsen, T.S. et al. Dissecting direct reprogramming through integrative genomic analysis. Nature 454, 49–55 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sridharan, R. et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136, 364–377 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Marion, R.M. et al. Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4, 141–154 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Boiani, M., Eckardt, S., Scholer, H.R. & McLaughlin, K.J. Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev. 16, 1209–1219 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bortvin, A. et al. Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development 130, 1673–1680 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Ng, R.K. & Gurdon, J.B. Epigenetic memory of active gene transcription is inherited through somatic cell nuclear transfer. Proc. Natl. Acad. Sci. USA 102, 1957–1962 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ng, R.K. & Gurdon, J.B. Epigenetic memory of an active gene state depends on histone H3.3 incorporation into chromatin in the absence of transcription. Nat. Cell Biol. 10, 102–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Feng, Q. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28, 704–712 (2010).

    Article  PubMed  Google Scholar 

  42. Hu, B.Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl. Acad. Sci. USA 107, 4335–4340 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature doi:10.1038/nature09342 (19 July 2010).

  44. Conboy, I.M., Conboy, M.J., Smythe, G.M. & Rando, T.A. Notch-mediated restoration of regenerative potential to aged muscle. Science 302, 1575–1577 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Sherwood, R.I. et al. Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119, 543–554 (2004).

    Article  CAS  PubMed  Google Scholar 

  46. Cheshier, S.H., Morrison, S.J., Liao, X. & Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 96, 3120–3125 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Huang, D.W. et al. Systematic and integrative analysis of large gene lists using DAVID Bioinformatics Resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  48. Figueroa, M.E., Melnick, A. & Greally, J.M. Genome-wide determination of DNA methylation by Hpa II tiny fragment enrichment by ligation-mediated PCR (HELP) for the study of acute leukemias. Methods Mol. Biol. 538, 395–407 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Selzer, R.R. et al. Analysis of chromosome breakpoints in neuroblastoma at sub-kilobase resolution using fine-tiling oligonucleotide array CGH. Genes Chromosom. Cancer 44, 305–319 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Thompson, R.F. et al. An analytical pipeline for genomic representations used for cytosine methylation studies. Bioinformatics 24, 1161–1167 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Culhane, A.C., Thioulouse, J., Perriere, G. & Higgins, D.G. MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21, 2789–2790 (2005).

    Article  CAS  PubMed  Google Scholar 

  52. Ehrich, M. et al. Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc. Natl. Acad. Sci. USA 102, 15785–15790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank N. Maherali and R. Walsh for helpful suggestions and critical reading of the manuscript, B. Wittner for statistical advice, J. LaVecchio, G. Buruzula, K. Folz-Donahue and L. Prickett for expert cell sorting and K. Coser for technical assistance. J.M.P. was supported by an MGH ECOR fellowship, E.A. by a Jane Coffin Childs fellowship, M.S. by a Schering fellowship and K.Y.T. by the Agency of Science, Technology and Research Singapore. Support to A.M. was from the Lymphoma Society, SCOR no. 7132-08; to T.E. from National Institutes of Health (NIH) grant HL056182 and NYSTEM; to A.J.W. in part from the Burroughs Wellcome Fund, Harvard Stem Cell Institute, Peabody Foundation, and NIH 1 DP2 OD004345-01, and the Joslin Diabetes Center DERC (P30DK036836); to K.H. from Howard Hughes Medical Institute, the NIH Director's Innovator Award and the Harvard Stem Cell Institute. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Author information

Authors and Affiliations

Authors

Contributions

J.M.P. and K.H. conceived the study, interpreted results and wrote the manuscript; J.M.P. performed most of the experiments with help from W.K.; S.L. and T.E. performed and interpreted in vitro differentiation assays; M.E.F and A.M. performed and analyzed HELP methylation experiments; K.Y.T. and A.J.W. isolated SMPs and derived most SMP-iPSCs; T.S. and S.N. performed expression arrays; and S.E., E.A. and M.S. provided essential study material. All authors gave critical input to the manuscript draft.

Corresponding author

Correspondence to Konrad Hochedlinger.

Ethics declarations

Competing interests

K.H. is an advisor for iPierian.

Additional information

Note added in proof: We thank George Daley for sharing unpublished results, which show similar differences in DNA methylation patterns and differentiation propensity of iPSCs derived from distinctive cell types. Of note, this report43 also suggests that somatic cell nuclear transfer more faithfully reprograms cells to a pluripotent state than transcription factor overexpression.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Table 1 (PDF 6276 kb)

Supplementary Table 2

Accession numbers of differentially expressed genes between indicated pairs of iPSCs. (XLS 108 kb)

Supplementary Table 3

Probe-set names and gene symbols of differentially methylated genes between SMP-iPSC and Gra-iPSC. (XLS 16 kb)

Supplementary Table 4

List of primers used for Q-PCR and Q-ChIP analyses. (XLS 20 kb)

Supplementary Table 5

List of primers used for Mass Array Epityping. (XLS 12 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polo, J., Liu, S., Figueroa, M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28, 848–855 (2010). https://doi.org/10.1038/nbt.1667

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1667

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research