Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metal-Affinity Separations: A New Dimension in Protein Processing

Abstract

Rapid growth in the preparative and high-resolution analytical applications of metal-affinity chromatography demonstrate the appeal of metal recognition as a basis for protein separations. Stable, inexpensive chelated metals effectively mimic bio-specific interactions, providing selective ligands for protein binding. This article reviews recent progress in understanding the mechanisms of metal-protein recognition that underlie metal-affinity separations. Also discussed are schemes for integrating metal-affinity purifications into the expression and bioprocessing of re-combinant proteins. Promising future developments include new metal-affinity processes for analytical and preparative-scale separations and a range of techniques for enhancing the selectivity of metal-affinity separations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davankov, V.A., Semechkin, A.V. 1977. Ligand-exchange chromatography. J. Chromatogr. 141: 313–353.

    Article  CAS  Google Scholar 

  2. Porath, J., Carlsson, J., Olsson, I. and Belfrage, G. 1975. Metal chelate affinity chromatography, a new approach to protein fractionation. Nature 258: 598–599.

    Article  CAS  Google Scholar 

  3. Vijayalakshmi, M.A. 1989. Pseudobiospecific ligand affinity chromatography. Trends Biotechnol. 7 : 71–76.

    Article  CAS  Google Scholar 

  4. Maisano, F., Testpro, S.A. and Grandi, G. 1989. Immobilized metal-ion affinity chromatography of human growth hormone. J. Chromatogr. 472: 422–427.

    Article  CAS  Google Scholar 

  5. Furlong, A.M., Thomsen, D.R., Marotti, K.R., Post, L.E. and Sharma, S.K. 1988. Active human tissue plasminogen activator secreted from insect cells using a baculovirus vector. Biotech. and Appl. Biochem. 10: 454–464.

    CAS  Google Scholar 

  6. Zawistowska, U., Sangster, K., Zawistowski, J., Langstaff, J. and Friesen, A.D. 1988. Immobilized metal affinity chromatography of wheat α-amylases. Cereal Chemistry 65: 413–416.

    CAS  Google Scholar 

  7. Corradini, D., Rassi, Z.E., Horvath, C., Guerra, G. and Horne, W. 1988. Combined lectin-affinity and metal-interaction chromatography for the separation of glycophorins by high-performance liquid chromatography. J. Chromatogr. 458: 1–11.

    Article  CAS  Google Scholar 

  8. Botros, H.G. and Vijayalakshmi, M. 1989. Cell surface interactions with metal chelates. J. Chromatogr. 495: 113–122.

    Article  CAS  Google Scholar 

  9. Sulkowski, F. 1989. The saga of IMAC and MIT. BioEssays 10: 169–175.

    Article  Google Scholar 

  10. Yip, T.-T., Nakagawa, Y. and Porath, J. 1989. Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal. Biochem. 183: 159–171.

    Article  CAS  Google Scholar 

  11. Chaga, G., Andersson, L., Ersson, B. and Porath, J. 1989. Purification of two mucle enzymes chromatography on immobilized ferric ions. Biotechnol. Appl. Biochem. 11: 424–431.

    CAS  PubMed  Google Scholar 

  12. Hemdan, E.S., Zhao, Y., Sulkowski, E. and Porath, J. 1989. Surface topography of histidine residues: a facile probe by immobilized metal ion affinity chromatography. Proc. Natl. Acad. Sci., USA. 86: 1811–1815.

    Article  CAS  Google Scholar 

  13. Todd, R., Van Dam, M., Casimiro, D., Haymore, B.L. and Arnold, F.H. 1990. Cu(II)-binding properties of a synthetic metal-binding cytochrome c: His-X3-His in an α-Helix. Submitted.

    Google Scholar 

  14. Suh, S.-S. and Arnold, F.H. 1990. A mathematical model for metal affinity partitioning. Biotechnol. & Bioeng. 35: 682–690.

    Article  CAS  Google Scholar 

  15. Leporati, E. 1986. Formation and stability of ternary complexes of copper(II) with ethylenediamine-N-acetic acid and amino acids in aqueous solution. J. Chem. Soc. Dalton Trans. 199–203.

  16. Suh, S.-S., Haymore, B.L. and Arnold, F.H. 1990. Characterization of His-X3-His sites in α-helices of synthetic metal-binding bovine somatotropin. Protein Engineering. In press.

    Google Scholar 

  17. Sulkowski, E. 1985. Purification of proteins by IMAC. Trends Biotechnol. 3: 1–7.

    Article  CAS  Google Scholar 

  18. Sulkowski, E. 1987. Immobilized metal ion affinity chromatography of proteins, p. 149–162. In: Protein Purification: Micro to Macro. R. Burgess (Ed.) A. R. Liss, Inc., NY.

    Google Scholar 

  19. Haymore, B.L., Bild, G.S., Abdel-Meguid, S.S., Clare, M.C., Krivi, G.G., Salsgiver, W.J. and Staten, N.R. Introducing strong metal-binding sites into somatotropin. Facile and efficient metal-affinity purification. Submitted.

  20. Sundberg, R.J., Martin, R.B. 1974. Interactions of histidine and other imidazole derivatives with transition metal ions in chemical and biological systems. Chem. Rev. 74: 471–517.

    Article  CAS  Google Scholar 

  21. Smith, M.C., Furman, T.C. and Pidgeon, C. 1987. Immobilized iminodiacetic acid metal peptide complexes. Identification of chelating peptide purification handles for recombinant proteins. Inorg. Chem. 26: 1965–1969.

    Article  CAS  Google Scholar 

  22. Porath, J. and Olin, B. 1983. Immobilized metal ion affinity absorption and immobilized metal ion affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry. 22: 1621–1630.

    Article  CAS  Google Scholar 

  23. Hochuli, E., Dobeli, H. & Schacher, A. 1987. New metal chelate adsorbent selective for proteins and peptides containing neighboring histidine residues. J. Chromatogr. 411: 177–184.

    Article  CAS  Google Scholar 

  24. Porath, J. 1988. IMAC—immobilized metal ion affinity based chromatography. Trends Anal. Chem. 7: 254–259.

    Article  CAS  Google Scholar 

  25. Skerra, A., Pfitzinger, I. and Pluckthun, A. 1991. The functional expression of antibody Fv fragments in E. coli: improved vectors and a generally applicable purification technique. Bio/Technology. In press.

    Google Scholar 

  26. Wuenschell, G.E., Wen, E. and Arnold, F.H. 1990. Chiral copper-chelate complexes alter selectivities in metal-affinity partitioning. Submitted.

    Google Scholar 

  27. Porath, J. 1987. Metal ion—hydrophobic, thiophilic and II-electron governed interactions and their application to salt-promoted protein adsorption chromatography. Biotech. Progr. 3: 14–21.

    Article  CAS  Google Scholar 

  28. Figueroa, A., Corradini, C., Feibush, B. and Karger, B.L. 1986. High-performance immobilized-metal affinity chromatography of proteins on iminodiacetic acid silica-based bonded phases. J. Chromatogr. 371: 335–352.

    Article  CAS  Google Scholar 

  29. El Rassi, Z. and Horvath, Cs. 1986. Metal chelate-interaction chromatography of proteins with iminodiacetic acid-bonded stationary phases on silica support. J Chromatogr. 359: 241–253.

    Article  CAS  Google Scholar 

  30. Uhlen, M. and Miks, T. 1990. Gene fusions for purpose of expression: an introduction. Methods Enzymol. 185: 129–143.

    Article  CAS  Google Scholar 

  31. Klapper, M.H. 1977. The independent distribution of amino acid near neighbor pairs into polypeptides. Biochem. Biophys. Res. Comm. 78: 1018–1024.

    Article  CAS  Google Scholar 

  32. Smith, M.C., Furman, T.C., Ingolia, T.D. and Pidgeon, C. 1988. Chelating peptide-immobilized metal ion affinity chromatography. J. Biol. Chem. 263: 7211–7215.

    CAS  Google Scholar 

  33. Hochuli, E., Bannwarth, W., Dobeli, H., Gentz, R. and Stuber, D. 1988. Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate absorbent. Bio/Technology 6: 1321–1325.

    CAS  Google Scholar 

  34. LeGrice, S.F.J., Gruninger-Leitch, F. 1990. Rapid purification of homodimer and heterodimer HIV-1 reverse transcriptase by metal chelate affinity chromatography. Eur. J. Biochem. 187: 307–314.

    Article  CAS  Google Scholar 

  35. Ljungquist, C., Breitholtz, A., Brink-Nilsson, H., Moks, T., Uhlen, M. and Nilsson, B. 1989. Immobilization and affinity purification of recombinant proteins using histidine peptide fusions. Eur. J. Biochem. 186: 563–569.

    Article  CAS  Google Scholar 

  36. Wuenschell, G.E., Naranjo, E. and Arnold, F.H. 1990. Aqueous two-phase metal affinity extraction of heme proteins. Bioprocess Engineering 5: 199–202.

    Article  CAS  Google Scholar 

  37. Plunkett, S. and Arnold, F.H. 1990. Metal affinity extraction of human hemoglobin in an aqueous polyethylene glycol/sodium sulfate two-phase system. Biotechnology Techniques 4: 45–48.

    Article  CAS  Google Scholar 

  38. Van Dam, M.E., Wuenschell, G.E. and Arnold, F.H. 1989. Metal affinity precipitation of proteins. Biotechnol. Appl. Biochem. 11: 492–502.

    CAS  PubMed  Google Scholar 

  39. Stover, F.S., Haymore, B.L. and McBeath, R.J. 1989. Capillary zone electrophoresis of histidine-containing compounds. J. Chromatogr. 470: 241–250.

    Article  CAS  Google Scholar 

  40. Hutchens, T.W., Li, C.M., Sato, Y. and Yip, T.-T. 1989. Multiple DNA-binding receptor forms resolved by interaction with immobilized metal ions. J. Biol. Chem. 264: 17206–17212.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arnold, F. Metal-Affinity Separations: A New Dimension in Protein Processing. Nat Biotechnol 9, 151–156 (1991). https://doi.org/10.1038/nbt0291-151

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0291-151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing