Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Environmental Effects on Protein Glycosylation

Abstract

Cultured mammalian cells are being used to produce proteins for therapeutic and diagnostic use because of their ability to perform complex post-translational modifications, including glycosylation. The oligosaccharide moieties can play an important role in defining several biological properties of glycoproteins, including clearance rate, immunogenicity, and biological specific activity. There is a growing interest in defining the factors that influence glycosylation, including the cell culture environment. In this review we organize the published data from in vitro cell culture and tissue culture studies that demonstrate direct effects of the culture environment on N-linked glycosylation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kobata, A. 1984. The carbohydrates of glycoproteins, chapter 2. In: Biology of Carbohydrates, V. 2. V. Ginsburg and P.W. Robbins (Eds.). John Wiley & Sons, NY.

    Google Scholar 

  2. Kornfeld, R. and Kornfeld, S. 1985. Assembly of asparagine-linked oligosaccharides. Ann. Rev. Biochem. 54: 631–664.

    Article  CAS  PubMed  Google Scholar 

  3. Fuhrmann, U., Bause, E. and Ploegh, H. 1985. Inhibitors of oligosaccharide processing. Biochim. Biophys. Acta 825: 95–110.

    Article  CAS  PubMed  Google Scholar 

  4. Schachter, H. 1986. Biosynthetic controls that determine the branching and microheterogeneity of protein-bound oligosaccharides. Biochem. Cell Biol. 64: 163–181.

    Article  CAS  PubMed  Google Scholar 

  5. Roth, J. 1987. Subcellular organization of glycosylation in mammalian cells. Biochim. Biophys. Acta 906: 405–436.

    Article  CAS  PubMed  Google Scholar 

  6. Taniguchi, T., Mizuochi, T., Beale, M., Dwek, R.A., Rademacher, T.W. and Kobata, A. 1985. Structures of the sugar chains of rabbit immunoglobulin G: occurrence of asparagine-linked sugar chains in the Fab fragment. Biochem. 24: 5551–5557.

    Article  CAS  Google Scholar 

  7. Kehry, M., Sibley, C., Fuhrman, J., Schilling, J. and Hood, L.E. 1979. Amino acid sequence of a mouse immunoglobulin μ chain. Proc. Natl. Acad. Sci. USA 76: 2932–2936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goto, M., Akai, K., Murakami, A., Hasimoto, C., Tsuda, E., Ueda, M., Kawanishi, G., Takahashi, N., Ishimoto, A., Chiba, H. and Saski, R. 1988. Production of recombinant erythropoietin in mammalian cells: host-cell dependency of the biological activity of the cloned glycoprotein. Bio/Technology 6: 67–71.

    CAS  Google Scholar 

  9. West, C.M. 1986. Current ideas on the significance of protein glycosylation. Mol. Cell. Biochem. 72: 3–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feizi, T. and Childs, R.A. 1987. Carbohydrates as antigenic determinants of glycoproteins. Biochem. J. 245: 1–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schauer, R. 1988. Sialic acids as antigenic determinants of complex carbohydrates. Adv. Exp. Med. Biol. 228: 47–72.

    Article  CAS  PubMed  Google Scholar 

  12. Ashwell, G. and Harford, J. 1982. Carbohydrate-specific receptors of the liver. Ann. Rev. Biochem. 51: 531–554.

    Article  CAS  PubMed  Google Scholar 

  13. McFarlane, I.G. 1983. Hepatic clearance of serum glycoproteins. Clin. Sci. 64: 127–135.

    Article  CAS  Google Scholar 

  14. Baenziger, J.U. 1985. The role of glycosylation in protein recognition. Am. J. Path. 121: 382–391.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hotchkiss, A., Refino, C.J., Leonard, C.K., O'Conner, J.V., Crowley, C., McCabe, J., Tate, K., Nakamura, G., Powers, D., Levinson, A., Mohler, M. and Spellman, M.W. 1988. The influence of carbohydrate structure on the clearance of recombinant tissue-type plasminogen activator. Thromb. Haemostas. 60: 255–261.

    Article  CAS  Google Scholar 

  16. Fukuda, M.N., Saski, H., Lopez, L. and Fukuda, M. 1989. Survival of recombinant erythropoietin in the circulation: the role of carbohydrates. Blood 73: 84–89.

    Article  CAS  PubMed  Google Scholar 

  17. Rademacher, T.W., Parekh, R.B. and Dwek, R.A., 1988. Glycobiology. Ann. Rev. Biochem. 57: 785–838.

    Article  CAS  PubMed  Google Scholar 

  18. Sairam, M.R. 1989. Role of carbohydrates in glycoprotein hormone signal transduction. FASEB J. 3: 1915–1926.

    Article  CAS  PubMed  Google Scholar 

  19. Baenziger, J.U. and Green, E.D. 1988. Pituitary glycoprotein hormone oligosaccharides: structure, synthesis and function of the asparagine-linked oligosaccharides on lutropin, follitropin and thyrotropin. Biochim. Biophys. Acta 947: 287–306.

    Article  CAS  PubMed  Google Scholar 

  20. Weintraub, B.D., Stannard, B.S., Magner, J.A., Ronin, C., Taylor, T., Joshi, L., Constant, R.B., Menezes-Ferreira, M.M., Petrick, P. and Gesundheit, N. 1985. Glycosylation and posttranslational processing of thyroid-stimulating hormone: clinical implications. Rec. Prog. Horm. Res. 41: 577–606.

    CAS  PubMed  Google Scholar 

  21. Weintraub, B.D., Gesundheit, N., Taylor, T. and Gyves, P.W. 1989. Effect of TRH on TSH glycosylation and biological action. Ann. N.Y. Acad. Sci. 553: 205–213.

    Article  CAS  PubMed  Google Scholar 

  22. Ishizaka, K. 1988. IgE-binding factors and regulation of the IgE antibody response. Ann. Rev. Immunol. 6: 513–534.

    Article  CAS  Google Scholar 

  23. Ishizaka, K. 1989. Regulation of the IgE antibody response. Int. Arch. Allergy Appl. Immun. 88: 8–13.

    Article  CAS  Google Scholar 

  24. Yodoi, J., Hirashima, M. and Ishizaka, K. 1980. Regulatory role of IgE-binding factors from rat T lymphocytes, II. Glycoprotein nature and source of IgE-potentiating factor. J. Immun. 125: 1436–1441.

    CAS  PubMed  Google Scholar 

  25. Shimizu, A., Putnam, F.W., Paul, C., Clamp, J.R. and Johnson, I. 1971. Structure and role of the five glycopeptides of human IgM immunoglobulins. Nature 231: 73–76.

    CAS  Google Scholar 

  26. Koide, N., Nose, M. and Muramatsu, T. 1977. Recognition of IgG by Fc receptor and complement: effects of glycosidase digestion. Biochem. Biophys. Res. Comm. 75: 838–844.

    Article  CAS  PubMed  Google Scholar 

  27. Nose, M. and Wigzell, H. 1983. Biological significance of carbohydrate chains on monoclonal antibodies. Proc. Natl. Acad. Sci. USA 80: 6632–6636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Leatherbarrow, R.J., Rademacher, T.W., Dwek, R.A., Woof, J.M., Clark, A., Burton, D.R., Richardson, N. and Feinstein, A. 1985. Effector functions of a monoclonal aglycosylated mouse IgG2a: binding and activation of complement component Cl and interaction with human monocyte Fc receptor. Mol. Immun. 22: 407–415.

    Article  CAS  Google Scholar 

  29. Duncan, A.R. and Winter, G. 1988. The binding site for Clq on IgG. Nature 332: 738–740.

    Article  CAS  PubMed  Google Scholar 

  30. Muraoka, S. and Shulman, M.J. 1989. Structural requirements for IgM assembly and cytolytic activity. J. Immun. 142: 695–701.

    CAS  PubMed  Google Scholar 

  31. Tsuchiya, N., Endo, T., Matsuta, K., Yoshinoya, S., Aikawa, T., Kosuge, E., Takeuchi, F., Miyamoto, T. and Kobata, A. 1989. Effects of galactose depletion from oligosaccharide chains on immunological activities of human IgG. J. Rheumatol. 16: 285–290.

    CAS  PubMed  Google Scholar 

  32. Wallick, S.C., Kabat, E.A. and Morrison, S.L. 1988. Glycosylation of a VH residue of a monoclonal antibody against α(1→6) dextran increases its affinity for antigen. J. Exp. Med. 168: 1099–1109.

    Article  CAS  PubMed  Google Scholar 

  33. Hashim, O.H. and Cushley, W. 1988. Simultaneous inhibition of multiple steps in the processing of N-linked oligosaccharides does not impair immunoglobulin secretion from rat hybridoma cells. Immun. 63: 383–388.

    CAS  Google Scholar 

  34. Hansen, L., Blue, Y., Barone, K., Collen, D. and Larsen, G.R. 1988. Functional effects of asparagine-linked oligosaccharides on natural and variant human tissue-type plasminogen activator. J. Biol. Chem. 263: 15713–15719.

    Article  CAS  PubMed  Google Scholar 

  35. Wittwer, A.J., Howard, S.C., Carr, L.S., Harakas, N.K., Feder, J., Parekh, R.B., Rudd, P.M., Dwek, R.A. and Rademacher, T.W. 1989. Effects of N-glycosylation on in vitro activity of Bowes melanoma and human colon fibroblast derived tissue plasminogen-activator. Biochem. 28: 7662–7669.

    Article  CAS  Google Scholar 

  36. Markoff, E., Sigel, M.B., Lacour, N., Seavey, B.K., Friesen, H.G. and Lewis, U.J. 1988. Glycosylation selectively alters the biological activity of prolactin. Endocrin. 123: 1303–1306.

    Article  CAS  Google Scholar 

  37. Pellegrini, I., Gunz, G., Ronin, C., Fenouillet, E., Peyrat, J.-P., Delori, P. and Jaquet, P. 1988. Polymorphism of prolactin secreted by human prolactinoma cells: immunological, receptor binding, and biological properties of the glycosylated and nonglycosylated forms. Endocrin. 122: 2667–2674.

    Article  CAS  Google Scholar 

  38. Langer, B.G., Weisel, J.W., Dinauer, P.A., Nagaswami, C. and Bell, W.R. 1988. Deglycosylation of fibrinogen accelerates polymerization and increases lateral aggregation of fibrin fibers. J. Biol. Chem. 263: 15056–15063.

    Article  CAS  PubMed  Google Scholar 

  39. Dube, S., Fisher, J.W. and Powell, J.S. 1988. Glycosylation at specific sites of erythropoietin is essential for biosynthesis, secretion, and biological function. J. Biol. Chem. 263: 17516–17521.

    Article  CAS  PubMed  Google Scholar 

  40. Moonen, P., Mermod, J.-J., Ernst, J.F., Hirschi, M. and DeLa-marter, J.F. 1987. Increased biological activity of deglycosylated recombinant human granulocyte/macrophage colony-stimulating factor produced by yeast or animal cells. Proc. Natl. Acad. Sci. USA 84: 4428–4431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gamou, S. and Shimizu, N. 1988. Glycosylation of the epidermal growth factor receptor and its relationship to membrane transport and ligand binding. J. Biochem. 104: 388–396.

    Article  CAS  PubMed  Google Scholar 

  42. Feige, J.-J. and Baird, A. 1988. Glycosylation of the basic fibroblast growth factor receptor. J. Biol. Chem. 263: 14023–14029.

    Article  CAS  PubMed  Google Scholar 

  43. Hunt, R.C., Riegler, R. and Davis, A.A. 1989. Changes in glycosylation alter the affinity of the human transferrin receptor for its ligand. J. Biol. Chem. 264: 9643–9648.

    Article  CAS  PubMed  Google Scholar 

  44. Jones, G.E., Arumugham, R.G. and Tanzer, M.L. 1986. Fibronectin glycosylation modulates fibroblast adhesion and spreading. J. Cell Biol. 103: 1663–1670.

    Article  CAS  PubMed  Google Scholar 

  45. Parekh, R.B., Tse, A.G.D., Dwek, R.A., Williams, A.F. and Rademacher, T.W., 1987. Tissue-specific N-glycosylation, site-specific oligosaccharide patterns and lentil lectin recognition of rat Thy-1. EMBO J. 6: 1233–1244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Paulson, J.C., Weinstein, J. and Schauer, A. 1989. Tissue-specific expression of sialyltransferases. J. Biol. Chem. 264: 10931–10934.

    Article  CAS  PubMed  Google Scholar 

  47. Hakomori, S.-I. 1984. Tumor-associated carbohydrate antigens. Ann. Rev. Immunol. 2: 103–126.

    Article  CAS  Google Scholar 

  48. Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, N., Tsukada, Y. and Kobata, A. 1983. Comparative study of the sugar chains of γ-glutamyltranspeptidases purified form rat liver and rat AH-66 hepatoma cells. Cancer Res. 43: 5059–5063.

    CAS  PubMed  Google Scholar 

  49. Yamashita, K., Ohkura, T., Tachibana, Y., Takasaki, S. and Kobata, A. 1984. Comparative study of the oligosaccharides released from baby hamster kidney cells and their polyoma transformant by hydrazinolysis. J. Biol. Chem. 259: 10834–10840.

    Article  CAS  PubMed  Google Scholar 

  50. Mizuochi, T., Nishimura, R., Derappe, C., Taniguchi, T., Hamamoto, T., Mochizuki, M. and Kobata, A. 1983. Structures of the asparagine-linked sugar chains of human chorionic gonadotropin produced in choricarcinoma. J. Biol. Chem. 258: 14126–14129.

    Article  CAS  PubMed  Google Scholar 

  51. Fenderson, B.A., Nichols, E.J., Clausen, H. and Hakomori, S.-I. 1986. A monoclonal antibody defining a binary N-acetylactosaminyl structure in lactoisooctaosylceramide (IV6Galβ1→4GlcNAcnLc6): a useful probe for determining differential glycosylation patterns between normal and transformed human fibroblasts. Mol. Immun. 23: 747–754.

    Article  CAS  Google Scholar 

  52. Pierce, M. and Arango, J. 1986. Rous sarcoma virus-transformed baby hamster kidney cells express higher levels of asparagine-linked tri- and tetraantennary glycopeptides containing [GlcNAc-β(1,6)Man-α(1,6)Man] and poly-N-acetyllactosamine sequences than baby hamster kidney cells. J. Biol. Chem. 261: 10772–10777.

    Article  CAS  PubMed  Google Scholar 

  53. Hubbard, S.C. 1987. Differential effects of oncogenic transformation on N-linked oligosaccharide processing at individual glycosylation sites of viral glycoproteins. J. Biol. Chem. 262: 16403–16411.

    Article  CAS  PubMed  Google Scholar 

  54. Arango, J. and Pierce, M. 1988. Comparison of N-acetylglucosamin-yltransferase V activities in Rous sarcoma-transformed baby hamster kidney (RS-BHK) and BHK cells. J. Cell. Biochem. 37: 225–231.

    Article  CAS  PubMed  Google Scholar 

  55. Dennis, J.W. and Laferte, S. 1989. Oncodevelopmental expression of -GlcNAcβ1-6Manα1-6Manβ1- branched asparagine-linked oligosaccharides in murine tissues and human breast carcinomas. Cancer Res. 49: 945–950.

    CAS  PubMed  Google Scholar 

  56. Utsumi, J., Mizuno, Y., Hosoi, K., Okano, K., Sawada, R., Kajitani, M., Sakai, I., Naruto, M. and Shimizu, H. 1989. Characterization of four different mammalian-cell-derived recombinant human interfer-on-β1s. Eur. J. Biochem. 181: 545–553.

    Article  CAS  PubMed  Google Scholar 

  57. Parekh, R.B., Dwek, R.A., Thomas, J.R., Opdenakker, G., Rademacher, T., Wittwer, A.J., Howard, S.C., Nelson, R., Siegel, N.R., Jennings, M.G., Harakas, N.K. and Feder, J. 1989. Cell-type-specific and site-specific N-glycosylation of type I and type II human tissue plasminogen activator. Biochem. 28: 7644–7662.

    Article  CAS  Google Scholar 

  58. Parekh, R.B., Dwek, R.A., Rudd, P.M., Thomas, J.R., Rademacher Warren, T., Wun, T.-C., Hebert, B., Reitz, B., Palmier, M., Ramabhadran, T. and Tiemeier, D.C. 1989. N-glycosylation and in vitro enzymatic activity of human recombinant tissue plasminogen activator expressed in Chinese hamster ovary cells and a murine cell line. Biochem. 28: 7670–7679.

    Article  CAS  Google Scholar 

  59. Nicollet, I., Lebreton, J.-P., Fontaine, M. and Hiron, M. 1981. Evidence for Alpha-1-acid glycoprotein populations of different pI values after concanavalin A affinity chromatography. Biochim. Biophys. Acta 668: 235–245.

    Article  CAS  PubMed  Google Scholar 

  60. Martinez, J. and Barsigian, C. 1987. Biology of Disease: carbohydrate abnormalities of N-linked plasma glycoproteins in liver disease. Lab. Invest. 57: 240–257.

    CAS  PubMed  Google Scholar 

  61. Strel'chyonok, O., Avvakumov, G.V. and Akhrem, A. 1984. Pregnancy-associated molecular variants of human serum transcortin and thyroxine-binding globulin. Carbohydr. Res. 134: 133–140.

    Article  CAS  PubMed  Google Scholar 

  62. Ain, K.B., Refetoff, S., Same, D.H. and Murata, Y. 1988. Effect of estrogen on the synthesis and secretion of thyroxine-binding globulin by a human hepatoma cell line, HEP G2. Mol. Endocrin. 2: 313–323.

    Article  CAS  Google Scholar 

  63. Pekelharing, J.M., Hepp, E., Kamerling, J.P., Gerwig, G.J. and Leijnse, B. 1988. Alterations in carbohydrate composition of serum IgG from patients with rheumatoid arthritis and from pregnant women. Ann. Rheum. Diseases 47: 91–95.

    Article  CAS  Google Scholar 

  64. de Jong, G. and van Eijk, H.G. 1988. Microheterogeneity of human serum transferrin: a biological phenomenon studied by isoelectric focusing in immobilized pH gradients. Electrophoresis 9: 589–598.

    Article  CAS  PubMed  Google Scholar 

  65. Elbein, A.D. 1987. Inhibitors of the biosynthesis and processing of N-linked oligosaccharide chains. Ann. Rev. Biochem. 56: 497–534.

    Article  CAS  PubMed  Google Scholar 

  66. Rearick, J.I., Chapman, A. and Kornfeld, S. 1981. Glucose starvation alters lipid-linked oligosaccharide biosynthesis in Chinese hamster ovary cells. J. Biol. Chem. 256: 6255–6261.

    Article  CAS  PubMed  Google Scholar 

  67. Davidson, S.K. and Hunt, L.A. 1985. Sindbis virus glycoproteins are abnormally glycosylated in Chinese hamster ovary cells deprived of glucose. J. Gen. Virol. 66: 1457–1468.

    Article  CAS  PubMed  Google Scholar 

  68. Gershman, H. and Robbins, P.W. 1981. Transitory effects of glucose starvation on the synthesis of dilichol-linked oligosaccharides in mammalian cells. J. Biol. Chem. 256: 7774–7780.

    Article  CAS  PubMed  Google Scholar 

  69. Baumann, H. and Jahreis, G.P. 1983. Glucose starvation leads in rat hepatoma cells to partially N-glycosylated glycoproteins including α1-acid glycoproteins. J. Biol. Chem. 258: 3942–3949.

    Article  CAS  PubMed  Google Scholar 

  70. Strube, K.-H., Schott, H.-H. and Geyer, R. 1988. Carbohydrate structure of glycoprotein 52 encoded by the polycythemia-inducing strain of Friend spleen focus-forming virus. J. Biol. Chem. 263: 3762–3771.

    Article  CAS  PubMed  Google Scholar 

  71. Stark, N.J. and Heath, E.C. 1979. Glucose-dependent glycosylation of secretory glycoprotein in mouse myeloma cells. Arch. Biochem. Biophys. 192: 599–609.

    Article  CAS  PubMed  Google Scholar 

  72. Turco, S.J. 1980. Modification of oligosaccharide-lipid synthesis and protein glycosylation in glucose-deprived cells. Arch. Biochem. Biophys. 205: 330–339.

    Article  CAS  PubMed  Google Scholar 

  73. Ronin, C., Stannard, B.S. and Weintraub, B.D. 1985. Differential processing and regulation of thyroid-stimulating hormone subunit carbohydrate chains in thyrotropic tumors and in normal and hypothyroid pituitaries. Biochem. 24: 5626–5631.

    Article  CAS  Google Scholar 

  74. Menezes-Ferreira, M.M., Petrick, P.A. and Weintraub, B.D. 1986. Regulation of thyrotropin (TSH) bioactivity by TSH-releasing hormone and thyroid hormone. Endocrin. 118: 2125–2130.

    Article  CAS  Google Scholar 

  75. Gesundheit, N., Fink, D.L., Silverman, L.A. and Weintraub, B.D. 1987. Effect of thyrotropin-releasing hormone on the carbohydrate structure of secreted mouse thyrotropin. J. Biol. Chem. 262: 5197–5203.

    Article  CAS  PubMed  Google Scholar 

  76. Ronin, C., Fenouillet, E., Hovsepian, S., Fayet, G. and Fournet, B. 1986. Regulation of thyroglobulin glycosylation. J. Biol. Chem. 261: 7287–7293.

    Article  CAS  PubMed  Google Scholar 

  77. Huff, T.F., Jardieu, P. and Ishizaka, K. 1986. Regulatory effects of human IgE-binding factors on the IgE response of rat lymphocytes. J. Immun. 136: 955–962.

    CAS  PubMed  Google Scholar 

  78. Pos, O., van Dijk, W., Ladiges, N., Linthorst, C., Sala, M., van Tiel, D. and Boers, W. 1988. Glycosylation of four acute-phase glycoproteins secreted by rat liver cells in vivo and in vitro; effects of inflammation and dexamethasone. Eur. J. Cell Biol. 46: 121–128.

    CAS  PubMed  Google Scholar 

  79. Firestone, G.L., John, N.J. and Yamamoto, K.R. 1986. Glucocorticoid-regulated glycoprotein maturation in wild-type and mutant rat cell lines. J. Cell Biol. 103: 2323–2331.

    Article  CAS  PubMed  Google Scholar 

  80. Haffar, O.K., Aponte, G.W., Bravo, D.A., John, N.J., Hess, R.T. and Firestone, G.L. 1988. Glucocorticoid-regulated localization of cell surface glycoproteins in rat hepatoma cells is mediated within the Golgi complex. J. Cell Biol. 106: 1463–1474.

    Article  CAS  PubMed  Google Scholar 

  81. Ramey, J.W., Highsmith, R.F., Wilfinger, W.W. and Baldwin, D.M. 1987. The effects of gonadotropin-releasing hormone and estradiol on luteinizing hormone biosynthesis in cultured rat anterior pituitary cells. Endocrin. 120: 1503–1513.

    Article  CAS  Google Scholar 

  82. Ziska, S.E., Bhattacharjee, M., Herber, R.L., Qasba, P.K. and Vonderhaar, B.K. 1988. Thyroid hormone regulation of α-lactalbumin: differential glycosylation and messenger ribonucleic acid synthesis in mouse mammary glands. Endocrin. 123: 2242–2248.

    Article  CAS  Google Scholar 

  83. Bradshaw, J.P., Hatton, J. and White, D.A. 1985. The hormonal control of protein N-glycosylation in the developing rabbit mammary gland and its effect upon transferrin synthesis and secretion. Biochim. Biophys. Acta 847: 344–351.

    Article  CAS  PubMed  Google Scholar 

  84. Wolf, G. 1984. Multiple functions of vitamin A. Physiol. Rev. 64: 873–937.

    Article  CAS  PubMed  Google Scholar 

  85. Bernard, B.A., De Luca, L.M., Hassell, J.R., Yamada, K.M. and Olden, K. 1984. Retinoic acid alters the proportion of high mannose to complex type of oligosaccharides on fibronectin secreted by cultured chondrocytes. J. Biol. Chem. 259: 5310–5315.

    Article  CAS  PubMed  Google Scholar 

  86. Lotan, R. and Irimura, T. 1987. Enhanced glycosylation of a melanoma cell surface glycoprotein by retinoic acid: carbohydrate chain analysis by lectin binding. Cancer Biochem. Biophys. 9: 211–221.

    CAS  PubMed  Google Scholar 

  87. Lotan, R., Lotan, D. and Amos, B. 1988. Enhancement of sialyltrans-ferase in two melanoma cell lines that are growth-inhibited by retinoic acid results in increased sialylation of different cell-surface glycoproteins. Exp. Cell. Res. 177: 284–294.

    Article  CAS  PubMed  Google Scholar 

  88. Lucier, G.W. and Hook, G.E.R. (Eds.). March, 1989. Environmental Health Perspectives, V.80.

    Google Scholar 

  89. Sherman, M. 1986. Retinoids and Cell Differentiation. CRC Press, Boca Raton, FL.

    Google Scholar 

  90. Liu, C.-K., Schmied, R., Schreiber, C., Rosen, A., Qian, G.-X. and Waxman, S. 1983. Glycosyltransferase alterations are cell type related when human promyelocytic leukemia (HL-60) cells are treated with various inducers of differentiation. Exp. Hematol. 11: 738–746.

    CAS  PubMed  Google Scholar 

  91. Moskal, J.R., Lockney, M.W., Marvel, C.C., Trosko, J.E. and Sweeley, C.C. 1987. Effects of retinoic acid and phorbol-12-myristate-13-acetate on glycosyltransferase activities in normal and transformed cells. Cancer Res. 47: 787–790.

    CAS  PubMed  Google Scholar 

  92. Van De Water, L., Aronson, D. and Braman, V. 1988. Alteration of fibronectin receptors (integrins) in phorbol ester-treated human promonocytic leukemia cells. Cancer Res. 48: 5730–5737.

    CAS  PubMed  Google Scholar 

  93. Durham, J.P., Ruppert, M. and Fontana, J.A. 1983. Glycosyltransferase activities and the differentiation of human promyelocytic (HL60) cells by retinoic acid and a phorbol ester. Biochem. Biophys. Res. Commun. 110: 348–355.

    Article  CAS  PubMed  Google Scholar 

  94. De Luca, L.M. 1977. The direct involvement of vitamin A in glycosyl transfer reactions of mammalian membranes. Vit. Horm. Adv. Res. App. 35: 1–57.

    CAS  Google Scholar 

  95. Rosso, G.C., Bendrick, C.J. and Wolf, G. 1981. In vivo synthesis of lipid-linked oligosaccharides in the livers of normal and vitamin A-deficient rats. J. Biol. Chem. 256: 8341–8347.

    Article  CAS  PubMed  Google Scholar 

  96. Chan, V.T. and Wolf, G. 1987. The role of vitamin A in the glycosylation reactions of glycoprotein synthesis in an ‘in vitro’ system. Biochem. J. 247: 53–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Thorens, B. and Vassalli, P. 1986. Chloroquine and ammonium chloride prevent terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. Nature 321: 618–620.

    Article  CAS  PubMed  Google Scholar 

  98. Oda, K., Ogata, S., Koriyama, Y., Yamada, E., Mifune, K. and Ikehara, Y. 1988. Tns inhibits both proteolytic and oligosaccharide processing occurring in the Golgi complex in primary cultured rat hepatocytes. J. Biol. Chem. 263: 12576–12583.

    Article  CAS  PubMed  Google Scholar 

  99. Anderson, D.R., Atkinson, P.H. and Grimes, W.J. 1985. Major carbohydrate structures at five glycosylation sites on murine IgM determined by high resolution 1H-NMR spectroscopy. Arch. Biochem. Biophys. 243: 605–618.

    Article  CAS  PubMed  Google Scholar 

  100. Moellering, B.J., Tedesco, J.L., Scott, R., Townsend, R.R., Hardy, M.R. and Prior, C.P. 1989. Electrophoretic differences in a MAb expressed in three media. Biopharm. 3: 30–38.

    Google Scholar 

  101. Rothman, R.J., Warren, L., Vliegenthart, J.F.G. and Hard, K.J. 1989. Clonal analysis of the glycosylation of immunoglobulin G secreted by murine hybridomas. Biochem. 28: 1377–1384.

    Article  CAS  Google Scholar 

  102. Matlin, K.S., Skibbens, J., McNeil, P.L. 1988. Reduced extracellular pH reversibly inhibits oligomerization, intracellular transport, and processing of the influenza hemagglutinin in infected Madi-Darby canine kidney cells. J. Biol. Chem. 263: 11478–11485.

    Article  CAS  PubMed  Google Scholar 

  103. Harrington, M.A., Wharton, W. and Pledger, W.J. 1987. Platelet-derived growth factor stimulation of [3H]glucosamine incorporation in density-arrested BALB/c-3T3 cells. J. Cell. Physiol. 130: 93–102.

    Article  CAS  PubMed  Google Scholar 

  104. Harrington, M.A. and Pledger, W.J. 1987. Platelet-derived growth factor stimulated mechanisms of glucosamine incorporation. Am. J. Physiol. 253: C567–C574.

    Article  CAS  PubMed  Google Scholar 

  105. West, C.M. and Brownstein, S.A. 1988. EDTA treatment alters protein glycosylation in the cellular slime mold Dictyostelium discoideum. Exp. Cell Res. 175: 26–36.

    Article  CAS  PubMed  Google Scholar 

  106. Megaw, J.M. and Johnson, L.D. 1979. Glycoprotein synthesized cultured cells: effects of serum concentrations and buffers on sugar content. Proc. Soc. Exp. Biol. Med. 161: 60–65.

    Article  CAS  PubMed  Google Scholar 

  107. Datema, R. and Schwarz, R.T. 1981. Effect of energy depletion on the glycosylation of a viral glycoprotein. J. Biol. Chem. 256: 11191–11198.

    Article  CAS  PubMed  Google Scholar 

  108. Kassenbrock, C.K., Garcia, P.D., Walter, P. and Kelly, R.B. 1988. Heavy-chain binding protein recognizes aberrant polypeptides translocated in vitro. Nature 333: 90–93.

    Article  CAS  PubMed  Google Scholar 

  109. Franc, J.-L., Hovsepian, S., Fayet, G. and Bouchilloux, S. 1984. Differential effects of thyrotropin on various glycosyltransferases in porcine thyroid cells. Biochem. Biophys. Res. Comm. 118: 910–915.

    Article  CAS  PubMed  Google Scholar 

  110. Franc, J.-L., Hovsepian, S., Fayet, G. and Bouchilloux, S. 1984. Responsiveness of glycosyltransferases to thyrotropin in a serum-free culture of porcine thyroid cells. Mol. Cell. Endocrin. 37: 233–239.

    Article  CAS  Google Scholar 

  111. Koendermann, A.H.L., Wijermans, P.W. and Van Den Eijnden, D.H. 1987. Changes in the expression of N-acetylglucosaminyltransferase III, IV, V associated with the differentiation of HL-60 cells. FEBS Lett. 222: 42–46.

    Article  Google Scholar 

  112. Cummings, R.D. and Mattox, S.A. 1988. Retinoic acid-induced differentiation of the mouse teratocarcinoma cell line F9 is accomplished by an increase in the activity of UDP-galactose:β-D-galactosyl-α1,3-galactosyltransferase. J. Biol. Chem. 263: 511–519.

    Article  CAS  PubMed  Google Scholar 

  113. Bedo, G., Santisteban, P. and Aranda, A. 1989. Retinoic acid regulates growth hormone gene expression. Nature 339: 231–234.

    Article  CAS  PubMed  Google Scholar 

  114. Chiocca, E.A., Davies, P.J.A. and Stein, J.P. 1989. Regulation of tissue transglutaminase gene expression as a molecular model for retinoid effects on proliferation and differentiation. J. Cell. Biochem. 39: 293–304.

    Article  CAS  PubMed  Google Scholar 

  115. Wang, X.C., O'Hanlon, T.P. and Lau, J.T.Y. 1989. Regulation of β-galactoside α2,6-sialyltransferase gene expression by dexametha-sone. J. Biol. Chem. 264: 1854–1859.

    Article  CAS  PubMed  Google Scholar 

  116. Nishikawa, Y., Pegg, W., Paulsen, H. and Schachter, H. 1988. Control of glycoprotein synthesis. J. Biol. Chem. 263: 8270–8281.

    Article  CAS  PubMed  Google Scholar 

  117. Forsee, W.T., Palmer, C.F. and Schutzbach, J.S. 1989. Purification and characterization of an α-1,2-mannosidase involved in processing asparagine-linked oligosaccharides. J. Biol. Chem. 264: 3869–3876.

    Article  CAS  PubMed  Google Scholar 

  118. Tulsiani, D.R.P. and Touster, O. 1988. The purification and characterization of mannosidase IA from rat liver Golgi membranes. J. Biol. Chem. 263: 5408–5417.

    Article  CAS  PubMed  Google Scholar 

  119. Schweden, J., Borgmann, C., Legler, G. and Bause, E. 1986. Characterization of calf liver glucosidase I and its inhibition by basic sugar analogs. Arch. Biochem. Biophys. 248: 335–340.

    Article  CAS  PubMed  Google Scholar 

  120. Schweden, J., Legler, G. and Bause, E. 1986. Purification and characterization of a neutral processing mannosidase from calf liver acting on (Man)9(GlcNAc)2 oligosaccharides. Eur. J. Biochem. 157: 563–570.

    Article  CAS  PubMed  Google Scholar 

  121. Saxena, S., Shailubhai, K., Dong-Yu, B. and Vijay, I.K. 1987. Purification and characterization of glucosidase II involved in relinked glycoprotein processing in bovine mammary gland. Biochem. J. 247: 563–570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Das, R.C. and Heath, E.C. 1980. Dolichyldiphosphoryloligosaccharide-protein oligosaccharyltransferase: solubilization, purification, and properties. Proc. Natl. Acad. Sci. USA 77: 3811–3815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Bendiak, B. and Schachter, H. 1987. Control of glycoprotein synthesis. J. Biol. Chem. 262: 5784–5790.

    Article  CAS  PubMed  Google Scholar 

  124. O'Keeffe, E.T., Hill, R.L. and Bell, J.E. 1980. Active site of bovine galactosyltransferase: kinetic and fluorescence studies. Biochem. 19: 4954–4962.

    Article  CAS  Google Scholar 

  125. Hettkamp, H., Legler, G. and Bause, E. 1984. Purification by affinity chromatography of glucosidase I, an endoplasmic reticulum hydro-lase involved in the processing of asparagine-linked oligosaccharides. Eur. J. Biochem. 142: 85–90.

    Article  CAS  PubMed  Google Scholar 

  126. Navaratnam, N., Ward, S., Fisher, C., Kuhn, N.J., Keen, J.N. and Findlay, J.B.C., 1988. Purification, properties and cation activation of galactosyltransferase from lactating-rat mammary Golgi membranes. Eur. J. Biochem. 171: 623–629.

    Article  CAS  PubMed  Google Scholar 

  127. Shailubhai, K., Pratta, M.A. and Vijay, I.K. 1987. Purification and characterization of glucosidase I involved in N-linked glycoprotein processing in bovine mammary gland. Biochem. J. 247: 555–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Dean, R.T., Jessup, W. and Roberts, C.R. 1984. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow. Biochem. J. 217: 27–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. von Zastrow, M., Castle, A.M. and Castle, J.D. 1989. Ammonium chloride alters secretory protein sorting within the maturing exocrine storage compartment. J. Biol. Chem. 264: 6566–6571.

    Article  CAS  PubMed  Google Scholar 

  130. Anderson, R.G.W. and Pathak, R.K. 1985. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell 40: 635–643.

    Article  CAS  PubMed  Google Scholar 

  131. Strous, G.J., Du Maine, A., Zijderhand-bleekemolen, J.E., Slot, J.W. and Schwartz, A.L. 1985. Effect of lysosomotropic amines on the secretory pathway and on the recycling of the asialoglycoprotein receptor in human hepatoma cells. J. Cell Biol. 101: 531–539.

    Article  CAS  PubMed  Google Scholar 

  132. Wagner, D.D., Mayadas, T. and Marder, V.J. 1986. Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Wildebrand factor. J. Cell Biol. 102: 1320–1324.

    Article  CAS  PubMed  Google Scholar 

  133. Pfeffer, S.R. and Rothman, J.E. 1987. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Ann. Rev. Biochem. 56: 829–852.

    Article  CAS  PubMed  Google Scholar 

  134. Burgess, T.L. and Kelly, R.B. 1987. Constitutive and regulated secretion of proteins. Ann. Rev. Cell Biol. 3: 243–293.

    Article  CAS  PubMed  Google Scholar 

  135. Peters, B.P., Brooks, M., Hartle, R.J., Krzesicki, R.F., Perini, F. and Ruddon, R.W. 1983. The use of drugs to dissect the pathway for secretion of the glycoprotein hormone chorionic gonadotropin by cultured human trophoblastic cells. J. Biol. Chem. 258: 14505–14515.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goochee, C., Monica, T. Environmental Effects on Protein Glycosylation. Nat Biotechnol 8, 421–427 (1990). https://doi.org/10.1038/nbt0590-421

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0590-421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing