Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Metabolic fluxes in riboflavin-producing Bacillus subtilis

Abstract

The pentose phosphate pathway and the pyruvate shunt were identified as major pathways of glucose catabolism in a recombinant, riboflavin-producing Bacillus subtilis strain. Reactions connecting the tricarboxylic acid cycle and glycolysis, catalyzed by the malic enzyme and phosphoenolpyruvate carboxykinase, consume up to 23% of the metabolized glucose. These are examples of important fluxes that can be accessed explicitly using a novel analysis based on synergistic application of flux balancing and recently introduced techniques of fractional 13C-labeling and two-dimensional nuclear magnetic resonance spectroscopy. The overall flux distribution also suggests that B. subtilis metabolism has an unusually high capacity for the reoxidation of NADPH. Under the conditions investigated, riboflavin formation in B. subtilis is limited by the fluxes through the biosynthetic rather than the central carbon pathways, which suggests a focus for future metabolic engineering of this system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bailey, J.E. 1991. Toward a science of metabolic engineering. Science 252: 1668–1675.

    Article  CAS  Google Scholar 

  2. Stephanopoulos, G. and Sinskey, A.J. 1993. Metabolic engineering—methodologies and future prospects. Trends. Biotechnol. 11: 392–396.

    Article  CAS  Google Scholar 

  3. Vallino, J.J. and Stephanopoulos, G. 1993. Metabolic flux distribution in Corynebacterium glutamicum during growth and lysine overproduction. Biotechnol. Bioeng. 41: 633–646.

    Article  CAS  Google Scholar 

  4. van Gulik, W.M. and Heijnen, J.J. 1995. A metabolic network stoichiometry analysis of microbial growth and product formation. Biotechnol. Bioeng. 48: 681–698.

    Article  CAS  Google Scholar 

  5. Eggeling, L., Sahm, H., and de Graaf, A.A 1996. Quantification and directing metabolite flux: application to amino acid overproduction. Adv. Biochem. Eng. 54 1–30.

    CAS  Google Scholar 

  6. Varma, A. and Palsson, B.O. 1994. Metabolic flux balancing: basic concepts, scientific, and practical use. Bio/Technology 12: 994–998.

    Article  CAS  Google Scholar 

  7. Galazzo, J.L. and Bailey, J.E. 1990. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb. Technol. 12: 162–172.

    Article  CAS  Google Scholar 

  8. Hatzimanikatis, V., Floudas, C.A. and Bailey, J.E. 1995. Analysis and design of metabolic reaction networks via mixed-integer linear optimization. AlChE J. 42: 1277–1292.

    Article  Google Scholar 

  9. Schlosser, P.M., Riedy, G. and Bailey, J.E. 1994. Ethanol production in baker's yeast: application of experimental perturbation techniques for model development and resultant changes in flux control analysis. Biotechnol. Prog. 10: 141–154.

    Article  CAS  Google Scholar 

  10. Holms, W.H. 1986. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr. Top. Cell. Regul. 28: 69–105.

    Article  CAS  Google Scholar 

  11. Sauer, U., Hatzimanikatis, V., Hohmann, H.-R., Manneberg, M., van Loon, A.P.G.M., and Bailey, J.E. 1996. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl. Environ. Microbiol. 62: 3687–3696.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tsai, P., Hatzimanikatis, V., and Bailey, J.E. 1996. Effect of Vitreoscilla hemoglobin dosage on microaerobic Escherichia coli carbon and energy metabolism. Biotechnol. Bioeng. 49: 139–150.

    Article  CAS  Google Scholar 

  13. Varma, A., Boesch, B.W. and Palsson, B.O. 1993. Biochemical production capabilities of Escherichia coli. Biotechnol. Bioeng. 42: 59–73.

    Article  CAS  Google Scholar 

  14. Goel, A., Ferrance, J., Jeong, J. and Ataa, M.M. 1993. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotechnol. Bioeng. 42: 686–696.

    Article  CAS  Google Scholar 

  15. Walsh, K. and J., Koshland, D.E. 1984. Determination of flux through the branch point of two metabolic cycles. J. Biol. Chem. 259: 9646–9654.

    CAS  PubMed  Google Scholar 

  16. Ishino, S., Shimomura-Nishimuta, J., Yamaguchi, K., Shirahata, K. and Araki, K. 1991. 13C nuclear magnetic resonance studies of glucose metabolism in L-glutamic acid and L-lysine fermentation by Corynebacterium glutamicum. J. Gen. Appl. Microbiol. 37: 157–165.

    Article  CAS  Google Scholar 

  17. Portais, J.-C., Schuster, R., Merle, M. and Canioni, P. 1993. Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1-13C]glucose incubation. Eur. J. Biochem. 217: 457–468.

    Article  CAS  Google Scholar 

  18. Rollin, C., Morgant, V., Guyonvarch, A. and Guerquin-Kern, J.-L. 1995. 13C-NMR studies of Corynebacterium melassecola metabolic pathways. Eur. J. Biochem. 227: 488–493.

    Article  CAS  Google Scholar 

  19. Marx, A., de Graaf, A.A., Wiechert, W., Eggeling, L., and Sahm, H. 1996. Determination of the fluxes in the central metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol. Bioeng. 49: 111–129.

    Article  CAS  Google Scholar 

  20. Neri, D., Szyperski, T., Otting, G., Senn, H., and Wuthrich, K. 1989. Stereospecific nuclear magnetic resonance assignments of the methyl groups of valine and leucine in the DMA-binding domain of the 434-repressor by biosynthetically directed fractional 13C labeling. Biochemistry 28: 7510–7516.

    Article  CAS  Google Scholar 

  21. Senn, H., Werner, B., Messerle, B.A., Weber, C., Traber, R. and Wuthrich, K. 1989. Stereospecific assignment of the methyl 1H-NMR lines of valine and isoleucine in polypeptides by nonrandom 13C labeling. FEBS Lett. 249: 113–118.

    Article  CAS  Google Scholar 

  22. Wüthrich, K., Szyperski, T., Leiting, B., and Otting, G. 1992. Biosynthetic pathways of the common proteinogenic amino acids investigated by fractional 13C labeling and NMR spectroscopy, pp. 41–48 in Frontiers and new horizons in amino acid research. Takai, K. (ed.). Elsevier, Amsterdam.

    Google Scholar 

  23. Szyperski, T. 1995. Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232: 433–448.

    Article  CAS  Google Scholar 

  24. Szyperski, T., Bailey, J.E., and Wuthrich, K. 1996. Detecting and dissecting metabolic fluxes using biosynthetic fractional 13C-labeling and two-dimensional NMR spectroscopy. Trends Biotechnol. 14: 453–459.

    Article  Google Scholar 

  25. Perkins, J.B., Pero, J.G. and Sloma, A. 1991. Riboflavin overproducing strains of bacteria. Europ. Pat. Appl. 0 405 370 A1.

  26. Diesterhaft, M.D. and Freese, E. 1973. Role of pyruvate carboxylase, phospho-enolpyruvate carboxykinase, and malic enzyme during growth and sporulation of Bacillus subtilis. J. Biol. Chem. 248: 6062–6070.

    CAS  PubMed  Google Scholar 

  27. Freese, E. and Fortnagel, U. 1969. Growth and sporulation of Bacillus subtilis mutants blocked in the pyruvate dehydrogenase complex. J. Bacteriol. 99: 745–756.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Volk, R. and Bacher, A. 1990. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. J. Biol. Chem. 265: 19479–19485.

    CAS  PubMed  Google Scholar 

  29. Wood, T.D. 1985. The pentose phosphate pathway. Academic Press Inc., Orlando, FL.

    Google Scholar 

  30. Sasajima, K. and Yoneda, M. 1984. Production of pentoses by micro-organisms. Biotechnol. Genet. Eng. Rev. 2: 175–213.

    Article  CAS  Google Scholar 

  31. Gottschalk, G. 1986. Bacterial metabolism, 2nd ed. Springer-Verlag, New York.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, U., Hatzimanikatis, V., Bailey, J. et al. Metabolic fluxes in riboflavin-producing Bacillus subtilis. Nat Biotechnol 15, 448–452 (1997). https://doi.org/10.1038/nbt0597-448

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0597-448

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing