Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments

Abstract

We have produced single-chain antibody fragments (scFv) in Saccharomyces cerevisiae at levels up to 20 mg/L in shake flask culture by a combination of expression level tuning and overexpression of folding assistants. Overexpression of the chaperone BiP or protein disulfide isomerase (PDI) increases secretion titers 2–8 fold for five scFvs. The increases occur for scFv expression levels ranging from low copy to ER-saturating overexpression. The disulfide isomerase activity of PDI, rather than its chaperone activity, is responsible for the secretion increases. A synergistic increase in scFv production occurs upon coover-expression of BiP and PDI.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. von Mehren, M.M. and Weiner, L.M.M. 1996. Monoclonal antibody-based therapy. Curr. Opin. Oncol. 8: 493–498.

    Article  CAS  PubMed  Google Scholar 

  2. Hodgson, J. 1991. Making monoclonals in microbes. Bio/Technology 9: 421–425.

    CAS  Google Scholar 

  3. Dorai, H., McCartney, J., Hudziak, R., Tai, M., Laminet, A., Houston, L. et al. 1994. Mammalian cell expression of single-chain Fv (sFv) antibody proteins and their C-terminal fusions with interleukin-2 and other effector domains. Bio/Technology 12:890–897.

    CAS  Google Scholar 

  4. Hsu, T.-A., Eiden, J.J., Bourgarel, P., Meo, T., and Betenbaugh, M.J. 1994. Effects of co-expressing chaperone BiP on functional antibody production in the baculovirus system. Protein Expr. Purif. 5: 595–603.

    Article  CAS  PubMed  Google Scholar 

  5. Hiatt, A. and Ma, J.K. 1993. Characterization and applications of antibodies produced in plants. Int. Rev. Immunol. 10: 139–152.

    Article  CAS  PubMed  Google Scholar 

  6. Wu, X.C., Ng, S.C., Near, R.I., and Wong, S.L. 1993. Efficient production of a functional single-chain antidigoxin antibody via an engineered Bacillu subtilisexpression-secretion system. Bio/Technology. 11: 71–76.

    CAS  Google Scholar 

  7. Nyyssonen, E., Penttila, M., Harkki, A., Saloheimo, A., Knowles, J.K., and Keranen, S. 1993. Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei . Bio/Technology. 11: 591–595.

    CAS  Google Scholar 

  8. Ridder, R., Schmitz, R., Legay, F. and Gram, H. 1995. Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris . Bio/Technology 13: 255–260.

    CAS  Google Scholar 

  9. Hammond, C. and Helenius, A. 1995. Quality control in the secretory pathway. Curr. Opin. Cell Biol. 7: 523–529.

    Article  CAS  PubMed  Google Scholar 

  10. FitzGerald, K., Holliger, P., and Winter, G. 1997. Improved tumour targeting by disulphide stabilized diabodies expressed in Pichia Pastoris . Prot. Engr. 10: 1221–1225.

    Article  CAS  Google Scholar 

  11. Knappik, A. and Plückthun, A. 1995. Engineered turns of a recombinant antibody improve its in vivo folding. Prot. Engr. 8: 81–89.

    Article  CAS  Google Scholar 

  12. Nieba, L., Honegger, A., Krebber, C., and Plückthun, A. 1997. Disrupting the hydrophobic patches at the antibody variable/constant domain interface: improved in vivofolding and physical characterization of an engineered scFv fragment. Prot. Engr. 10: 435–444.

    Article  CAS  Google Scholar 

  13. Horwitz, A.H., Chang, C.P., Better, M., Hellstrom, K.E., and Robinson, R.R. 1988. Secretion of functional antibody and Fab fragment from yeast cells. Proc. Natl. Acad. Sci. USA 85: 8678–8682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wood, C.R., Boss, M.A., Kenten, J.H., Calvert, J.E., Roberts, N.A., and Emtage, J.S. 1985. The synthesis and in vivo assembly of functional antibodies in yeast. Nature 314: 446–449.

    Article  CAS  PubMed  Google Scholar 

  15. Faber, K.N., Warder, W., Ab, G., and Veenhuis, M., 1995. Review: Methylotrophic yeasts as factories for the production of foreign proteins. Yeast 11: 1331–1344.

    Article  CAS  PubMed  Google Scholar 

  16. Parekh, R.N., Shaw, M.R., and Wittrup, K.D. 1996. An integrating vector for tunable high copy stable integration into the dispersed Ty δ sites of Saccharomyces cerevisiae . Biotechnol. Prog. 12: 16–21.

    Article  CAS  PubMed  Google Scholar 

  17. Parekh, R.N. and Wittrup, K.D. 1997. Expression level tuning for optimal heterologous protein secretion in Saccharomyces cerevisiae . Biotechnol. Prog. 13: 117–122.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson, A.S. and Wittrup, K.D. 1995. Constitutive overexpression of secreted heterologous proteins decreases extractable BiP and protein disulfide isomerase levels in Saccharomyces cerevisiae . Biotechnol. Prog. 11: 171–177.

    Article  CAS  PubMed  Google Scholar 

  19. Clements, J.M., Catlin, G.H., Price, M.J., and Edwards, R.M. 1991. Secretion of human epidermal growth factor from Saccharomyces cerevisiae using synthetic leader sequences. Gene 106: 267–271.

    Article  CAS  PubMed  Google Scholar 

  20. Mylin, L.M., Hofmann, K.J., Schultz, L.D., and Hopper, J.E. 1990. Regulated GAL4 expression cassette providing controllable and high-level output from high-copy galactose promoters in yeast. Methods Enzymol. 185: 297–308.

    Article  CAS  PubMed  Google Scholar 

  21. Robinson, A.S., Bockhaus, J.A., Voegler, A.C., and Wittrup, K.D. 1996. Reduction of BiP levels decreases heterologous protein secretion in Saccharomyces cerevisiae . J. Biol. Chem. 271: 10017–10022.

    Article  CAS  PubMed  Google Scholar 

  22. Knappik, A. 1995. Autikörper aus Escherichia coli: Untersuchung and Optimierung der in vivo Faltung. PhD thesis, Universität Zürich, (cited on page 8, contains yields).

  23. Glockshuber, R., Malia, M., Pfitzinger, I., and Plückthun, A. 1990. A comparison of strategies to stabilize immunoglobulin Fv-fragments.Biochemistry 29: 1362–1367.

    Article  CAS  PubMed  Google Scholar 

  24. Gilbert, H. 1997. Protein disulfide isomerase and assisted protein folding. J. Biol. Chem. 272: 29399–29402.

    Article  CAS  PubMed  Google Scholar 

  25. Laboissiere, M.C.A., Sturley, S.L., and Raines, R.T. 1995. The essential function of protein disulfide isomerase is to unscramble non-native disulfide bonds. J. Biol. Chem. 47: 28006–28009.

    Google Scholar 

  26. Walker, K.W., Lyles, M.M., and Gilbert, H.F. 1996. Catalysis of oxidative protein folding by mutants of protein disulfide isomerase with a single active-site cysteine. Biochemistry. 35: 1972–1980.

    Article  CAS  PubMed  Google Scholar 

  27. Dorner, A.J., Wasley, L.C., and Kaufman, R.J. 1992. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J. 11: 1563–1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harmsen, M.M., Bruyne, M.I., and Raue, H.A. 1996. Overexpression of binding protein and disruption of the PMR1 gene synergistically stimulate secretion of bovine prochymosin but not plant thaumatin in yeast. Appl. Microbiol. Biotechnol. 46: 365–370.

    Article  CAS  PubMed  Google Scholar 

  29. Hsu, T.-A. and Betenbaugh, M.J. 1997. Coexpression of molecular chaperone BiP improves immunoglobulin solubility and IgG secretion from Trichoplusia niinsect cells. Biotechnol. Prog. 13: 96–104.

    Article  CAS  PubMed  Google Scholar 

  30. Ma, J., Kearney, J.F., and Hendershot, L.M. 1990. Association of transport-defective light chains with immunoglobulin heavy chain binding protein. Mol. Immunol. 27: 623–630.

    Article  CAS  PubMed  Google Scholar 

  31. Haas, I.G. 1991. BiP-A heat shock protein involved in immunoglobulin chain assembly. Curr. Top. Microbiol. Immunol. 167: 71–82.

    CAS  PubMed  Google Scholar 

  32. Robinson, A.S., Hines, V., and Wittrup, K.D. 1994. Protein disulfide isomerase overexpression increases secretion of foreign proteins in Saccharomyces cerevisiae . Bio/Technology 12: 381–384.

    Article  CAS  Google Scholar 

  33. Schultz, L., Markus, H., Hofmann, K., Montgomery, D., Dunwiddie, C., Kniskern, P. et al. 1994. Using molecular genetics to improve the production of recombinant proteins by the yeast Saccharomyces cerevisiae . Ann. NY Acad. Sci. 721: 148–157.

    Article  CAS  PubMed  Google Scholar 

  34. Hayano, T. Hirose, M., and Kikuchi, M . 1995. Protein disulfide isomerase mutant lacking its isomerase activity accelerates protein folding in the cell. FEBS Lett. 377: 505–511.

    Article  CAS  PubMed  Google Scholar 

  35. Glockshuber, R., Schmidt, T., and Plückthun, A. 1992. The disulfide bonds in antibody domains: effects on stability, folding in vitro, and functional expression in Escherichia coli . Biochemistry 31: 1270–1279.

    Article  CAS  PubMed  Google Scholar 

  36. Lilie, H., McLaughlin, S., Freedman, R., and Buchner, J. 1994. Influence of protein disulfide isomerase (PDI) on antibody folding in vitro . J. Biol. Chem. 269: 14290–14296.

    CAS  PubMed  Google Scholar 

  37. Ryabova, L.A., Desplancq, D., Spirin, A.S. and Plückthun, A. 1997.Functional antibody production using cell-free translation: effects of protein disulfide isomerase and chaperones. Nat. Biotechnol. 15: 79–84.

    Article  CAS  PubMed  Google Scholar 

  38. Knappik, A., Krebber, C., and Plückthun, A. 1993. The effect of folding catalysts on the in vivo folding process of different antibody fragments expressed in Escherichia coli . Bio/Technology 11: 77–83.

    CAS  Google Scholar 

  39. Gething, M.J. and Sambrook, J. 1992. Protein folding in the cell. Nature 355: 33–45.

    Article  CAS  PubMed  Google Scholar 

  40. Parekh, R., Forrester, K., and Wittrup, D. 1995. Multicopy overexpression of bovine pancreatic trypsin inhibitor saturates the protein folding and secretory capacity of Saccharomyces cerevisiae . Prot. Exp. Puri. 6: 537–545.

    Article  CAS  Google Scholar 

  41. Sikorski, R.S. and Hieter, P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae .Genetics 122: 19–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gietz, R.D. and Schiestl, R.H. 1996. Transforming yeast with DNA. Methods in Molecular and Cellular Biology 5: 255–269.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shusta, E., Raines, R., Plückthun, A. et al. Increasing the secretory capacity of Saccharomyces cerevisiae for production of single-chain antibody fragments. Nat Biotechnol 16, 773–777 (1998). https://doi.org/10.1038/nbt0898-773

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0898-773

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing