Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research
  • Published:

Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions

Abstract

We describe a simple, quantitative assay for any amplifiable DNA sequence that uses a video camera to monitor multiple polymerase chain reactions (PCRs) simultaneously over the course of thermocycling. The video camera detects the accumulation of double-stranded DNA (dsDNA) in each PCR using the increase in the fluorescence of ethidium bromide (EtBr) that results from its binding duplex DNA. The kinetics of fluorescence accumulation during thermocycling are directly related to the starting number of DNA copies. The fewer cycles necessary to produce a detectable fluorescence, the greater the number of target sequences. Results obtained with this approach indicate that a kinetic approach to PCR analysis can quantitate DNA sensitively, selectively and over a large dynamic range. This approach also provides a means of determining the effect of different reaction conditions on the efficacy of the amplification and so can provide insight into fundamental PCR processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mullis, K., Faloona, R., Scharf, S., Saiki, R., Horn, G. and Erlich, H. 1986. Specific enzymatic amplification of DNA in vitro: The polymerase chain reaction. Cold Spring Harb. Symp. Quant. Biol. 51: 263–273.

    Article  CAS  Google Scholar 

  2. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B. and Erlich, H.A. 1988. Primer-Directed Enzymatic Amplification of DNA with a Thermostable DNA Polymerase. Science 239: 487–491.

    Article  CAS  PubMed  Google Scholar 

  3. Higuchi, R., Dollinger, G., Walsh, P.S. and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Bio/Technology 10: 413–417.

    Article  CAS  Google Scholar 

  4. Sutherland, J.C., Sutherland, B.M., Emrick, A., Monteleone, D.C., Ribeiro, E.A., Trunk, J., Son, M., Serwer, P., Poddar, S.K. and Maniloff, J. 1991. Quantitative electronic imaging of gel fluorescence with CCD cameras: Applications in molecular biology. Biotechniques 10: 492–497.

    CAS  PubMed  Google Scholar 

  5. Kwok, S.Y., Mack, D.H., Mullis, K.B., Poiesz, B.J., Ehrlich, G.D., Blair, D. and Friedman-Kien, A.S. 1987. Identification of human immunodeficiency virus sequences by using in vitro enzymatic amplification and oligomer cleavage detection. J. Virol. 61: 1690–1694.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lawyer, F.C., Stoffel, S., Saiki, R.K., Chang, S., Landre, P., Abramson, R. and Gelfand, D.H. 1993. High-level expression, purification, and enzymatic characterization of full-length Thermits aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Journal. In press.

  7. Walsh, P.S., Metzger, D.A. and Higuchi, R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506–513.

    CAS  PubMed  Google Scholar 

  8. Higuchi, R. and Kwok, S. 1989. Avoiding false positives with PCR. Nature 339: 237–238.

    Article  PubMed  Google Scholar 

  9. Piatak, M. Jr., Saag, M.S., Yang, L.C., Clark, S.J., Kappes, J.C., Luk, K.-C., Hahn, B.H., Shaw, G.M. and Lifson, J.D. 1993. High levels of HIV-1 plasma during all stages of infection determined by competitive PCR. Science 259: 1749–1754.

    CAS  PubMed  Google Scholar 

  10. McCarrey, J.R., Dilworth, D.D. and Sharp, R.M. 1992. Semiquantitative analysis of X-linked gene expression during spermatogenesis in the mouse: Ethidium-bromide staining of RT-PCR products. Genet. Anal. Tech. Appl. 9: 117–123.

    Article  CAS  PubMed  Google Scholar 

  11. Gilliland, G., Perrin, S., Blanchard, K. and Bunn, H.F. 1990. Analysis of cytokine mRNA and DNA: Detection and quantitation by competitive polymerase chain reaction. Proc. Natl. Acad. Sci. 87: 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugland, R.P., Mathies, R.A. and Glazer, A.N. 1992. Stable florescent complexes of double-stranded DNA with bis-intercalating asymmetric czanimol dyes: properties and applications. Nucl. Acids Res. 20: 2803–2812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Holland, P.M., Abramson, R.D., Watson, R. and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc. Natl. Acad. Sci. 88: 7276–7280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chou, Q., Russell, M., Birch, D.E., Raymond, J. and Bloch, W. 1992. Prevention of pre-PCR mis-priming and primer dimerization improves low-copy-number simplifications. Nucl. Acids Res. 20: 1717–1723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kwok, S., Kellogg, D.E., McKinney, N., Spasic, D., Goda, L., Levenson, C. and Sninsky, J.J. 1990. Effects of primer-template mismatches on the polymerase chain reaction: Human immunodeficiency virus type 1 model studies. Nucl. Acids Res. 18: 999–1005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson, J.B., Ndugwa, C., Mmiro, F., Kataaha, P., Guay, L., Dragon, E.A., Goldfarb, J. and Olness, K. 1991. Non-isotopic polymerase chain reaction methods for the detection of HIV-1 in Ugandan mothers and infants. AIDS 5: 1463–1467.

    Article  CAS  PubMed  Google Scholar 

  17. Sanchez-Pescador, R., Power, M.D., Barr, P.J., Steimer, K.S., Stempien, M.M., Brown-Shimer, S.L., Gee, W.W., Renard, A., Randolph, A., Levy, J.A., Dina, D. and Luciw, P.A. 1985. Nucleotide sequence and expression of an AlDS-associated retrovirus (ARV-2). Science 227: 484–492.

    Article  CAS  PubMed  Google Scholar 

  18. Horn, G.T., Bugawan, T.L., Long, C.M. and Erlich, H.A. 1988. Allelic sequence variation of the HLA-DQα loci, relationship to serology and to insulin-dependent diabetes susceptibility. Proc. Natl. Acad. Sci. 85: 3504–3508.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, R., Fockler, C., Dollinger, G. et al. Kinetic PCR Analysis: Real-time Monitoring of DNA Amplification Reactions. Nat Biotechnol 11, 1026–1030 (1993). https://doi.org/10.1038/nbt0993-1026

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0993-1026

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing