Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Stable Multicopy Vectors for High–Level Secretion of Recombinant Human Serum Albumin by Kluyveromyces Yeasts

Abstract

We have designed stable pKD1 derivatives for efficient secretion of recombinant human serum albumin (rHSA) by industrial strains of Kluyveromyces yeasts. A comparison of this multi–copy expression system with isogenic cassettes integrated at chromosomal loci demonstrated that high level secretion of rHSA is a function of gene dosage in K. lactis. Various signal sequences could be used, and the secretion levels were independent of the presence of the native pro peptide. The mitotic stability of the pKD1–based expression vectors was found to be species and strain dependent and was influenced by promoter strength and culture conditions. Vector stability was drastically enhanced when the HSA gene was expressed from an inducible promoter: 90% of the transformed cells still harbored the vector after 100 generations of non–selective growth in uninduced culture conditions. Secretion levels in the range of several grams per liter of correctly folded and processed rHSA were obtained at the pilot scale, thus making the industrial production of pharmaceutical–grade, Kluyveromyces–derived rHSA economically feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sellers, E.M. and Kocg-Weser, M.D. 1977. In: Albumin: Structure, Function and Uses, p. 159–182. Rosenoer, V.M., Oratz, M., Rothschild, M.A. (Eds.). Pergamon Press Inc., Oxford.

    Google Scholar 

  2. Jeans, E.R.A., Marshall, P.J. and Lowe, C.R. 1985. Plasma protein fractionation. Trends Biotechnol. 3: 267–270.

    Article  CAS  Google Scholar 

  3. Brown, J.R. In: Albumin Structure, Function and Uses. p. 27–51. Rosenoer, V.M., Oratz, M., Rothschild, M.A. (Eds.). Pergamon Press Inc., Oxford.

  4. Latta, M., Knapp, M., Sarmientos, P., Bréfort, G., Becquart, J., Guerrier, L., Jung, G. and Mayaux, J.F. 1987. Synthesis and purification of mature human serum albumin from E. coli. Bio/Technology 5: 1309–1314.

    CAS  Google Scholar 

  5. Saunders, C.W., Schmidt, B.J., Mallonee, R.L. and Guyer, M.S. 1987. Secretion of human serum albumin from B. subtilis. J. Bacteriol. 169: 2917–2925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schekman, R. and Novick, P. 1982. In: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, p. 361–398. Strathern, J., Jones, E., and Broach, J. (Eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

    Google Scholar 

  7. Judah, J.D. and Quinn, P.S. 1978. Calcium ion-dependent vesicle fusion in the conversion of proalbumin to albumin. Nature 271: 384–385.

    Article  CAS  PubMed  Google Scholar 

  8. Steiner, D.F., Quinn, P.S., Chan, S.J., Marsh, J. and Trager, H.S. 1980. Processing mechanisms in the biosynthesis of proteins. Ann. N.Y. Acad. Sci. 343: 1–16.

    Article  CAS  PubMed  Google Scholar 

  9. Bathurst, I.C., Brennan, S.O., Carrell, R.W., Cousens, L.S., Brake, A.J. and Barr, P.J., 1987. Kex2 protease has the properties of a human proalbumin converting enzyme. Science 235: 348–351.

    Article  CAS  PubMed  Google Scholar 

  10. Egel-Mitani, M., Flygenring, H.P. and Hansen, M.T. 1990. A novel aspartyl protease allowing KEX2-independent MFα propheromone processing in yeast. Yeast 6: 127–137.

    Article  CAS  PubMed  Google Scholar 

  11. Sleep, D., Belfield, G.P. and Goodey, A.R. 1990. The secretion of human serum albumin from the yeast Saccharomyces cerevisiae using five different leader sequences. Bio/Technology 8: 42–46.

    CAS  Google Scholar 

  12. Etcheverry, T., Forrester, W. and Hitzeman, R. 1986. Regulation of the chelatin promoter during the expression of human serum albumin or yeast phosphoglycerate kinase in yeast. Bio/Technology 4: 726–730.

    CAS  Google Scholar 

  13. Kalman, M., Cserpan, I., Bajszar, G., Dobi, A., Horvath, E., Pazman, C. and Simoncsits, A. 1990. Synthesis of a gene for human serum albumin and its expression in S. cerevisiae. Nuc. Acids Res. 18: 6075–6081.

    Article  CAS  Google Scholar 

  14. Stark, M.J.R., Boyd, A., Mileham, A.J. and Romanos, M.A. 1990. The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6: 1–29.

    Article  CAS  PubMed  Google Scholar 

  15. Van den Berg, J.A., Van der Laken, K.J., Van Ooyen, A.J.J., Renniers, T.C.H.M., Rietveld, K. and Schaap, A., Brake, A.J., Bishop, R.J., Schultz, K., Moyer, D., Richman, M. and Shuster, J.R. 1990. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8: 135–139.

    CAS  Google Scholar 

  16. Wésolowski-Louvel, M., Tanguy-Rougeau, C. and Fukuhara, H. 1988. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4: 71–81.

    Article  PubMed  Google Scholar 

  17. Tanguy-Rougeau, C., Wésolowski-Louvel, M. and Fukuhara, H., 1988. The Kluyveromyces lactis KEX1 gene encodes a subtilisin-type serine proteinase. FEBS Lett. 234: 464–470.

    Article  CAS  PubMed  Google Scholar 

  18. Chen, X.J., Wésolowski-Louvel, M., Tanguy-Rougeau, C., Bianchi, M.M., Fabiani, L., Saliola, M., Falcone, C., Frontali, L. and Fukuhara, H. 1988. A gene-cloning system lor Kluyveromyces lactis and isolation of a chromosomal gene required for killer toxin production. J. Basic Microbiol. 28: 211–220.

    Article  CAS  PubMed  Google Scholar 

  19. Falcone, C., Saliola, M., Chen, X.J., Frontali, L. and Fukuhara, H. 1986. Analysis of a 1.6-μm circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15: 248–252.

    Article  CAS  PubMed  Google Scholar 

  20. Chen, X.J., Saliola, M., Falcone, C., Bianchi, M.M., Wésolowski-Louvel, M. and Fukuhara, H. 1986. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucl. Acids Res. 14: 4471–4481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bianchi, M.M., Falcone, C., Chen, X.J., Wésolowski-Louvel, M., Frontali, L. and Fukuhara, H. 1989. Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKD1. Curr. Genet. 12: 185–192.

    Article  Google Scholar 

  22. Chen, X.J., Bianchi, M.M., Suda, K. and Fukuhara, H. 1989. The host range of the pKD1-derived plasmids in yeast. Curr. Genet. 16: 95–98.

    Article  CAS  PubMed  Google Scholar 

  23. Sor, F. and Fukuhara, H. 1985.Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr. Genet. 9: 147–155.

    Article  CAS  Google Scholar 

  24. Hitzeman, R.A., Hagie, F.E., Hayflick, J.S., Chen, C.Y., Seeburg, P.H. and Derynck, R. 1983. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nuc. Acids Res. 10: 7791–7808.

    Article  Google Scholar 

  25. Kozak, M. 1984. Compilation and analysis of sequences upstream from the translational start in eukaryotic mRNA. Nuc. Acids Res. 12: 857–879.

    Article  CAS  Google Scholar 

  26. Hamilton, R., Watanabe, C.K. and de Boer, H. A. 1987. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nuc. Acid Res. 15: 3581–3593.

    Article  CAS  Google Scholar 

  27. Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292.

    Article  CAS  PubMed  Google Scholar 

  28. Stark, M.J.R. and Boyd, A. 1986. The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encodes them. EMBO J. 5: 1995–2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tschopp, J.F., Sverlow, G., Kosson, R., Craig, W. and Grinna, L. 1987. High-level secretion of glycosylated invertase in the methylo-trophic yeast, Pichia pastoris. Bio/Technology 5: 1305–1308.

    CAS  Google Scholar 

  30. Ferrero, I., Goffrini, P. and Wésolowski-Louvel, M. 1991. Phospho-glucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol. Gen. Genet. In press.

    Google Scholar 

  31. Rothstein, R.J. 1983. One-step gene disruption in yeast. Methods in Enzymol. 101: 202–211.

    Article  CAS  Google Scholar 

  32. Wésolowski-Louvel, M., Goffrini, P. and Ferrero, I., 1988. The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglu-cose isomerase. Nuc. Acid Res. 16: 8714.

    Article  Google Scholar 

  33. Bitter, G.A. and Egan, K.M. 1984. Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehy-3-phosphate gene promoter. Gene 32: 263–274.

    Article  CAS  PubMed  Google Scholar 

  34. Breuning, K.D., Dhalems, U., Das, S. and Hollenberg, C.P. 1984. Analysis of a eukaryotic β-galactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product. Nuc. Acids Res. 5: 2327–2341.

    Article  Google Scholar 

  35. Leonardo, J.M., Bhairi, S.M. and Dickson, R.C. 1987. Identification of upstream activator sequences that regulate induction of the β-ga-lactosidase gene in Kluyveromyces lactis. Mol. Cell. Biol. 7: 4369–4376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Das, S., Breuning, K.D. and Hollenberg, C.P. 1985. A positive regulatory element is involved in the induction of the β-galactosidase gene from Kluyveromyces lactis. EMBO J. 4: 793–798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Fleer, R., Chen, X.J., Amellal, N., Yeh, P., Fournier, A., Guinet, F., Gault, N., Faucher, D., Folliard, F., Fukuhara, H. and Mayaux, J.-F. 1991. High level secretion of correctly processed recombinant human interleukin-1β in Kluyveromyces lactis. Gene. In press.

    Google Scholar 

  38. Wray, L.V., Witte, M.M., Dickson, R.C. and Riley, M.I. 1987. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: Structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 1111–1121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sleep, D., Belfield, G.P., Ballance, D.J., Steven, J., Jones, S., Evans, L.R., Moir, P.D. and Goodey, A.R. 1991. Saccharomyces cerevisiae strains that overexpress heterologous proteins. Bio/Technology 9: 183–187.

    CAS  Google Scholar 

  40. Rhône-Poulenc Santé 1989. Method for the microbiological preparation of human serum albumin and other heterologous proteins from yeast. Europ. Patent Appl. N° 89 10480.

  41. Ito, H., Fukuda, Y., Murata, K. and Kimura, A. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fournier, A., Fleer, R., Yeh, P. and Mayaux, J.-F. 1990. The primary structure of the 3-phosphoglycerate kinase (PGK) gene from Kluyveromyces lactis. Nuc. Acids Res. 18: 365.

    Article  CAS  Google Scholar 

  43. Lue, N.F., Chasman, D.I., Buchman, A.R. and Kornberg, R. 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vivo. Mol. Cell. Biol. 7: 3446–3451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fleer, R., Yeh, P., Amellal, N. et al. Stable Multicopy Vectors for High–Level Secretion of Recombinant Human Serum Albumin by Kluyveromyces Yeasts. Nat Biotechnol 9, 968–975 (1991). https://doi.org/10.1038/nbt1091-968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1091-968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing