Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria

Abstract

We have developed a new vector strategy for the insertion of foreign genes into the genomes of gram negative bacteria not closely related to Escherichia coli. The system consists of two components: special E. coli donor strains and derivatives of E. coli vector plasmids. The donor strains (called mobilizing strains) carry the transfer genes of the broad host range IncP–type plasmid RP4 integrated in their chromosomes. They can utilize any gram negative bacterium as a recipient for conjugative DNA transfer. The vector plasmids contain the P–type specific recognition site for mobilization (Mob site) and can be mobilized with high frequency from the donor strains. The mobilizable vectors are derived from the commonly used E. coli vectors pACYC184, pACYC177, and pBR325, and are unable to replicate in strains outside the enteric bacterial group. Therefore, they are widely applicable as transposon carrier replicons for random transposon insertion mutagenesis in any strain into which they can be mobilized but not stably maintained. The vectors are especially useful for site–directed transposon mutagenesis and for site–specific gene transfer in a wide variety of gram negative organisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kleckner, N., Roth, J. and Botstein, D. 1977. Genetic engineering in vivo using translocatablc drug resistance elements: New methods in bacterial genetics. J. Mol. Biol. 116: 125–159.

    Article  CAS  Google Scholar 

  2. Berg, D.E. and Berg, C.M. 1983. The prokaryotic transposable element Tn5. BIO/TECHNOLOGY 1: 417–435.

    Article  Google Scholar 

  3. Tait, R.C., Close, T.J., Lundquist, R.C., Hagiya, M., Rodriguez, R.L. and Kado, C.I. 1983. Construction and characterization of a versatile broad-host range DNA cloning system for gram-negative bacteria. BIO/TECHNOLOGY 1: 269–275.

    Google Scholar 

  4. Bukhari, A.J., Shapiro, J.A. and Adhya, S.L. (eds.) 1977. DNA insertion elements, plasmids, and episomes. Cold Spring Harbor Laboratory, New York.

  5. Shaw, K.J. and Berg, C.M. 1979. Escherichia coli auxotrophs induced by insertion of the transposable element Tn5. Genetics 92: 741–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Berg, D.E., Weiss, A. and Crossland, L. 1980. Polarity of Tn5 insertion mutations in Escherifhia coli. J. Bact. 142: 439–446.

    CAS  PubMed  Google Scholar 

  7. Datta, N., Hedges, R.W., Shaw, E.J., Sykcs, R.B. and Richmond, M.H. 1971. Properties of an R factor from Pseudomonas aeruginosa. J. Bact. 108: 1244–1249.

    CAS  PubMed  Google Scholar 

  8. Datta, N. and Hedges, R.W. 1972. Host ranges of R factors. J. Gen. Microbiol. 70: 453–460.

    Article  CAS  Google Scholar 

  9. Olsen, R.H. and Shipley, P. 1973. Host range and properties of the Pseudomonas R factor R1822. J. Bact. 113: 772–780.

    CAS  PubMed  Google Scholar 

  10. Beringer, J.G. 1974. R factor transfer in Rhizobium leguminosarum. J. Gen. Microbiol. 84: 188–198.

    CAS  PubMed  Google Scholar 

  11. Chakrabarty, A.M. 1976. Plasmids in Pseudomonas. Ann. Rev. Genet. 10: 7–30.

    Article  CAS  Google Scholar 

  12. Beringer, J.E., Beynon, J.L., Buchanan-Wollaston, A.V. and Johnston, A.W.B. 1978. Transfer of the drug-resistance transposon Tn5 to Rhizobium. Nature 276: 633–634.

    Article  Google Scholar 

  13. Van Vliet, F., Silva, B., Van Montagu, M. and Schell, J. 1978. Transfer of RP4Mu Plasmids to Agrobacterium tumefaciens. Plasmid 1: 446–455.

    Article  CAS  Google Scholar 

  14. Sato, M., Staskawicz, B.J., Panopoulos, N.J., Peters, S. and Honma, M. 1981. A host-dependent hybrid plasmid suitable as a suicidal carrier for transposable elements. Plasmid 6: 325–331.

    Article  CAS  Google Scholar 

  15. Bachmann, B.J. and Low, K.B. 1980. Linkage map of Esrherichia coli K12. Edition G. Microbiol. Rev. 44: 1–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Simon, R. 1980, Incompatibilität und Replikation des Resistcnz-Plasmids RP4. Ph.D. thesis, University of Erlangen, FRG.

  17. Guiney, D.G. and Helinski, D.R. 1979. The DNA-protein relaxation complex of the plasmid RK2: Location of the site-specific nick in the region of the proposed origin of transfer. Mol. Gen. Genet. 176: 183–189.

    CAS  PubMed  Google Scholar 

  18. Burkardt, H.0J., Reiss, G. and Pühler, A. 1979. Relationship of group P1 plasmids revealed by heteroduplex experiments: RP1, RP4, R68, and RK2 are identical. J. Gen. Microbiol. 114: 341–348.

    Article  CAS  Google Scholar 

  19. Figurski, D.H. and Helinski, E.R. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648–1652.

    Article  CAS  Google Scholar 

  20. Boucher, C., Bergeron, B., Bertalmio, M. B. and Dénarié, J. 1977. Introduction of Bacteriophage Mu into Pseudomonas snlanacearum and Rhizobium meliloti using the R factor RP4. J. Gen. Microbiol. 98: 253–263.

    Article  CAS  Google Scholar 

  21. Simon, R., Weber, G., Arnold, W. and Pühler, A. 1983. Analysis of plasmid borne genes in Rhizobium meliloti by Tn5 mutagenesis, p.67–89. In: K. W. Clark and J. H. G. Stephens (eds.) Proceedings of the 8th North American Rhizobium Conference, University of Manitoba, Winnipeg, Canada.

    Google Scholar 

  22. Banalfi, Z., Sakanyan, V., Koncz, C., Kiss, A., Dusha, I. and Kondorosi, A. 1981. Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of R. meliloti. Mol. Gen. Genet. 184: 318–325.

    Google Scholar 

  23. Meade, H.M., Long, S.R., Ruvkun, G.B., Brown, S.E. and Ausubel, F.M. 1982. Physical and genetic characterization of symbiotic and auxotrophic mutants of Rhizobium meliloti induced by transposon Tn5 mutagenesis. J. Bact. 149: 114–122.

    CAS  PubMed  Google Scholar 

  24. Forrai, T., Vincze, E., Banalfi, Z., Kiss, G.B., Randhawa, G. S. and Kondorosi, A. 1983. Localization of symbiotic mutations in Rhizobium meliloti. J. Bact. 153: 635–643.

    CAS  PubMed  Google Scholar 

  25. Lowe, J.B. and Berg, D.E. 1983. A product of the transposase gene inhibits transposition. Genetics 103: 609–615.

    Google Scholar 

  26. White, F.F., Klee, H.J. and Nester, E.W. 1983. In vivo packaging of cosmids in transposon-mediated mutagenesis. J. Bact. 153: 1075–1078.

    CAS  PubMed  Google Scholar 

  27. Ruvkun, G.B. and Ausubel, F.M. 1981. A general method for site-directed mutagenesis in prokaryotes. Nature 289: 85.

    Article  CAS  Google Scholar 

  28. Miller, J.H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory, New York.

  29. Morrison, D.A. 1977. Transformation in Escherichia coli: Cryogenic preservation of competent cells. J. Bact. 132: 349–351.

    CAS  PubMed  Google Scholar 

  30. Clewell, D.B. and Helinski, D.R. 1969. Supercoiled circular DNA-protein complex in E. coli: Purification and induced conversion to an open circular DNA form. Proc. Natl. Acad. Sci. USA 62: 1159–1166.

    Article  CAS  Google Scholar 

  31. Holmes, D.S. and Quigley, M. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114: 193–197.

    Article  CAS  Google Scholar 

  32. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular cloning. Cold Spring Harbor Laboratory, New York.

  33. Davis, R.W., Botstein, D. and Roth, J.R. 1980. Advanced Bacterial Genetics. Cold Spring Harbor Laboratory, New York.

  34. Hohn, B. 1979. In vitro packaging of λ and cosmid DNA, p. 299–309. In: Methods in Enzymology, R. Wu (ed.), Academic Press, New York.

    Google Scholar 

  35. Priefer, U.B., Burkardt, H.J., Klipp, W. and Pühler, A. 1981. ISR1: An insertion element isolated from the soil bacterium Rhizobium lupini. Cold Spring Harbor Symposia on Quantitative Biology, Vol. XLV—Part I, Cold Spring Harbor, New York.

    Article  CAS  Google Scholar 

  36. Rosner, J.L. 1972. Formation, induction and curing of bacteriophage PI lysogens. Virol. 48: 679–689.

    Article  CAS  Google Scholar 

  37. Heilmann, H. 1979. Molekulare Analyse des Resistenzgens des Phagen Pl. Ph.D. thesis, University of Erlangen, FRG.

  38. Meyerowitz, E.M., Guild, G.M., Prestidge, L.S. and Hogness, D.S. 1980. A new cosmid vector and its use. Gene 11: 271–282.

    Article  CAS  Google Scholar 

  39. Jorgensen, R.A., Rothstein, S.J. and Reznikoff, W.S. 1979. A restriction enzyme cleavage map of Tn5 and location of a region encoding neomycin resistance. Mol. Gen. Genet. 177: 65–72.

    Article  CAS  Google Scholar 

  40. Barth, P.T. and Grinter, N.J. 1977. A Tn7 insertion map of RP4, p. 675–677. In: DNA insertion elements, plasmids, and episomes. A. J. Bukhari, J. A. Shapiro, and S. L. Adhya (eds.), Cold Spring Harbor Laboratory, New York.

    Google Scholar 

  41. Simon, R. and Pühler, A. 1980. Mapping of replication genes of plasmid RP4, p. 35–42. In: Antibiotic resistance. S. Mitsuhashi, L. Rosival, and V. Krecmery (eds.), Springer-Verlag, Berlin, Heidelberg, New York.

    Chapter  Google Scholar 

  42. Chang, A.C.Y. and Cohen, S.N. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bact. 134: 1141–1156.

    CAS  PubMed  Google Scholar 

  43. Bolivar, F. 1978. Construction and characterization of new cloning vehicles III. Derivatives of plasmid pBR322 carrying unique FcoRI sites for selection of FcoRI generated recombinant molecules. Gene 4: 121–136.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simon, R., Priefer, U. & Pühler, A. A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotechnol 1, 784–791 (1983). https://doi.org/10.1038/nbt1183-784

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1183-784

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing