Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neural progenitors from human embryonic stem cells

Abstract

The derivation of neural progenitor cells from human embryonic stem (ES) cells is of value both in the study of early human neurogenesis and in the creation of an unlimited source of donor cells for neural transplantation therapy. Here we report the generation of enriched and expandable preparations of proliferating neural progenitors from human ES cells. The neural progenitors could differentiate in vitro into the three neural lineages—astrocytes, oligodendrocytes and mature neurons. When human neural progenitors were transplanted into the ventricles of newborn mouse brains, they incorporated in large numbers into the host brain parenchyma, demonstrated widespread distribution and differentiated into progeny of the three neural lineages. The transplanted cells migrated along established brain migratory tracks in the host brain and differentiated in a region-specific manner, indicating that they could respond to local cues and participate in the processes of host brain development. Our observations set the stage for future developments that may allow the use of human ES cells for the treatment of neurological disorders.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Martin, G.R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 78, 7634–7638 (1981).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans, M.J. & Kaufman, M.H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Brook, F.A. & Gardner, R.L. The origin and efficient derivation of embryonic stem cells in the mouse. Proc. Natl. Acad. Sci. USA 94, 5709–5712 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robertson, E.J. Embryo derived stem cell lines. In Teratocarcinomas and embryonic stem cells: a practical approach. (ed. Robertson, E.J.) 71–112 (IRL Press, Oxford, UK; 1987).

  • Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Reubinoff, B.E., Pera, M.F., Fong, C-Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Itskovitz-Eldor, J. et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol. Med. 6, 88–95 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D.A. & Benvenisty, N. Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 97, 11307–11312 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Svendsen, C.N. & Smith, A.G. New prospects for human stem-cell therapy in the nervous system. Trends Neurosci. 22, 357–364 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

    CAS  PubMed  Google Scholar 

  • Okabe, S., Forsberg-Nilsson, K., Spiro, A.C., Segal, M. & McKay, R.D.G. Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech. Dev. 59, 89–102 (1996).

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Pevny, L., Lovell-Badge, R. & Smith, A. Generation of purified neural precursors from embryonic stem cells by lineage selection. Curr. Biol. 8, 971–974 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Brustle, O. et al. In vitro–generated neural precursors participate in mammalian brain development. Proc. Natl. Acad. Sci. USA 94, 14809–14814 (1997).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brustle, O. et al. Embryonic stem cell–derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. et al. Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA 97, 6126–6131 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McDonald, J.W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Svendsen, C.N. et al. A new method for the rapid and long term growth of human neural precursor cells. J. Neurosci. Methods 85, 141–152 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Uchida, N. et al. Direct isolation of human central nervous system stem cells. Proc. Natl. Acad. Sci. USA 97, 14720–14725 (2000).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flax, J.D. et al. Engraftable human neural stem cells respond to developmental cues, replace neurons and express foreign genes. Nat. Biotechnol. 16, 1033–1039 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Vescovi, A.L. et al. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation. Exp. Neurol. 156, 71–83 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Wolpert, L. et al. Principles of development. (Oxford University Press, New York; 1998).

  • Lendhal, U., Zimmerman, L.B. & McKay, R.D.G. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  Google Scholar 

  • Mujtaba, T. et al. Lineage-restricted neural precursors can be isolated from both the mouse neural tube and cultured ES cells. Dev. Biol. 214, 113–127 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Kilpatrick, T. & Bartlett, P.E. Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10, 255–265 (1993).

    Article  CAS  PubMed  Google Scholar 

  • Niwa, H., Miyazaki, J. & Smith, A.G. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Tropepe, V. et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism. Neuron 30, 65–78 (2001).

    Article  CAS  PubMed  Google Scholar 

  • Clarke, D.L. et al. Generalized potential of adult neural stem cells. Science 288, 1660–1663 (2000).

    Article  CAS  PubMed  Google Scholar 

  • Murray, K. & Dubois-Dalcq, M. Emergence of oligodendrocytes from human neural spheres. J. Neurosci. Res. 50, 146–156 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Sommer, I. & Schachner, M. Monoclonal antibodies (O1–O4) to oligodendrocyte cell surface: an immunocytological study in the central nervous system. Dev. Biol. 83, 311–327 (1981).

    Article  CAS  PubMed  Google Scholar 

  • Dawson, M.R.I., Levine, J.M. & Reynolds, R. NG2 expressing cells in the central nervous system: are they oligodendroglial progenitors. J. Neurosci. Res. 61, 471–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  • McKay, R. Stem cells in the central nervous system. Science 276, 66–70 (1997).

    Article  CAS  PubMed  Google Scholar 

  • Goldman, S.A. & Luskin, M.B. Strategies utilized by migrating neurons of the post natal vertebrate forebrain. Trends Neurosci. 21, 107–114 (1998).

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.H., Lumelsky, N., Studer, L., Auerbach, J.M. & Mckay, R.D. Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nat. Biotechnol. 18, 675–679 (2000).

    Article  CAS  PubMed  Google Scholar 

  • van Eijk, M.J.T. et al. Molecular cloning, genetic mapping and developmental expression of bovine POU5F1. Biol. Reprod. 60, 1093–1103 (1999).

    Article  PubMed  Google Scholar 

  • Kukekov, V.G. et al. Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain. Exp. Neurol. 156, 333–344 (1999).

    Article  CAS  PubMed  Google Scholar 

  • Shamblott, M.J. et al. Human embryonic germ cell derivatives express a broad range of developmentally distinct markers and proliferate extensively in vitro. Proc. Natl. Acad. Sci. USA 98, 113–118 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Eithan Galun for critically reviewing this manuscript, Neri Laufer for his generous support and Orna Singer for assistance in cell culture. Many thanks to Mark Tarshish for his help in obtaining confocal images. The study was supported by a grant (No. 2005-1-99) from the Israeli Ministry of Science, a grant from Embryonic Stem Cells International (ESI) Pte Ltd. and by The Hilda Katz Blaustein Fund.

Author information

Authors and Affiliations

Authors

Additional information

The online version of the original article can be found at 10.1038/nbt1201-1117

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reubinoff, B., Itsykson, P., Turetsky, T. et al. Neural progenitors from human embryonic stem cells. Nat Biotechnol 19, 1134–1140 (2001). https://doi.org/10.1038/nbt1201-1134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1201-1134

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing