Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An essential role for Akt1 in dendritic cell function and tumor immunotherapy

Abstract

Current dendritic cell (DC) vaccine preparations involving ex vivo differentiation and maturation produce short-lived, transiently active DCs that may curtail T-cell responses in vivo. We demonstrate that Akt1, downregulation of which decreases DC lifespan, is critical for proinflammatory signal–mediated DC survival and maturation. Lipopolysaccharide or CD40 signaling stabilizes Akt1, promoting both activation and Bcl-2–dependent survival of DCs. Expression of a potent allele encoding a lipid raft–targeted Akt1, MF-ΔAkt, is sufficient for maturation and survival of murine bone marrow–derived DCs in vivo. MF-ΔAkt–transduced DCs enhanced T-cell proliferation, activation and long-term memory responses, enabling eradication of large pre-established lymphomas and aggressive B16 melanomas. Human myeloid DCs expressing constitutively active MF-ΔhAkt also survived significantly longer and promoted antigen-specific T-cell responses. Thus, Akt1 is a critical regulator of DC lifespan, and its manipulation in DCs can improve the clinical efficacy of DC-based tumor vaccines.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LPS and CD40 prevent DC death by blocking the downregulation of Akt and Bcl-2.
Figure 2: Akt1 is critical for LPS and CD40-mediated DC survival and activation.
Figure 3: Functionally optimized Akt induces DC activation and protects DCs from PI3K inhibition.
Figure 4: MF-ΔAkt and M-Akt induce BMDC longevity in vitro and in vivo, leading to T-cell activation and proliferation.
Figure 5: MF-ΔAkt expression enhances the efficacy of DC-based therapeutic tumor vaccines and antigen-specific CD8+ T cell memory responses.
Figure 6: MF-ΔhAkt induces human MoDC longevity, leading to improved antigen-specific CTL activation and proliferation.

Similar content being viewed by others

References

  1. Schuler, G., Schuler-Thurner, B. & Steinman, R.M. The use of dendritic cells in cancer immunotherapy. Curr. Opin. Immunol. 15, 138–147 (2003).

    CAS  PubMed  Google Scholar 

  2. Ridgway, D. The first 1000 dendritic cell vaccinees. Cancer Invest. 21, 873–886 (2003).

    PubMed  Google Scholar 

  3. Hermans, I.F., Ritchie, D.S., Yang, J., Roberts, J.M. & Ronchese, F. CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J. Immunol. 164, 3095–3101 (2000).

    CAS  PubMed  Google Scholar 

  4. Liu, K. et al. Immune tolerance after delivery of dying cells to dendritic cells in situ. J. Exp. Med. 196, 1091–1097 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Park, Y., Lee, S.W. & Sung, Y.C. Cutting Edge: CpG DNA inhibits dendritic cell apoptosis by up-regulating cellular inhibitor of apoptosis proteins through the phosphatidylinositide-3′-OH kinase pathway. J. Immunol. 168, 5–8 (2002).

    CAS  PubMed  Google Scholar 

  6. Josien, R. et al. TRANCE, a tumor necrosis factor family member, enhances the longevity and adjuvant properties of dendritic cells in vivo. J. Exp. Med. 191, 495–502 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Miga, A.J. et al. Dendritic cell longevity and T cell persistence is controlled by CD154–CD40 interactions. Eur. J. Immunol. 31, 959–965 (2001).

    CAS  PubMed  Google Scholar 

  8. Nopora, A. & Brocker, T. Bcl-2 controls dendritic cell longevity in vivo. J. Immunol. 169, 3006–3014 (2002).

    CAS  PubMed  Google Scholar 

  9. Ouaaz, F., Arron, J., Zheng, Y., Choi, Y. & Beg, A.A. Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 16, 257–270 (2002).

    CAS  PubMed  Google Scholar 

  10. Contin, C. et al. Membrane-anchored CD40 is processed by the tumor necrosis factor-alpha-converting enzyme. Implications for CD40 signaling. J. Biol. Chem. 278, 32801–32809 (2003).

    CAS  PubMed  Google Scholar 

  11. Hanks, B.A. et al. Re-engineered CD40 receptor enables potent pharmacological activation of dendritic-cell cancer vaccines in vivo. Nat. Med. 11, 130–137 (2005).

    CAS  PubMed  Google Scholar 

  12. Chuang, T.H. & Ulevitch, R.J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 5, 495–502 (2004).

    CAS  PubMed  Google Scholar 

  13. Wald, D. et al. SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat. Immunol. 4, 920–927 (2003).

    CAS  PubMed  Google Scholar 

  14. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    CAS  PubMed  Google Scholar 

  15. Watanabe, T., Kitani, A., Murray, P.J. & Strober, W. NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat. Immunol. 5, 800–808 (2004).

    CAS  PubMed  Google Scholar 

  16. Shen, L., Evel-Kabler, K., Strube, R. & Chen, S.Y. Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigen-specific anti-tumor immunity. Nat. Biotechnol. 22, 1546–1553 (2004).

    CAS  PubMed  Google Scholar 

  17. Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol. 7, 148–155 (2006).

    CAS  PubMed  Google Scholar 

  18. Hou, W.S. & Van Parijs, L.A. Bcl-2-dependent molecular timer regulates the lifespan and immunogenicity of dendritic cells. Nat. Immunol. 5, 583–589 (2004).

    CAS  PubMed  Google Scholar 

  19. Brazil, D.P., Yang, Z.Z. & Hemmings, B.A. Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem. Sci. 29, 233–242 (2004).

    CAS  PubMed  Google Scholar 

  20. Ishii, K.J. et al. Potential role of phosphatidylinositol 3 kinase, rather than DNA-dependent protein kinase, in CpG DNA-induced immune activation. J. Exp. Med. 196, 269–274 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ardeshna, K.M., Pizzey, A.R., Devereux, S. & Khwaja, A. The PI3 kinase, p38 SAP kinase, and NF-kappaB signal transduction pathways are involved in the survival and maturation of lipopolysaccharide-stimulated human monocyte-derived dendritic cells. Blood 96, 1039–1046 (2000).

    CAS  PubMed  Google Scholar 

  22. Bharti, A.C. & Aggarwal, B.B. Ranking the role of RANK ligand in apoptosis. Apoptosis 9, 677–690 (2004).

    CAS  PubMed  Google Scholar 

  23. Yu, Q., Kovacs, C., Yue, F.Y. & Ostrowski, M.A. The role of the p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and phosphoinositide-3-OH kinase signal transduction pathways in CD40 ligand-induced dendritic cell activation and expansion of virus-specific CD8+ T cell memory responses. J. Immunol. 172, 6047–6056 (2004).

    CAS  PubMed  Google Scholar 

  24. Vassiliou, E., Sharma, V., Jing, H., Sheibanie, F. & Ganea, D. Prostaglandin E2 promotes the survival of bone marrow-derived dendritic cells. J. Immunol. 173, 6955–6964 (2004).

    CAS  PubMed  Google Scholar 

  25. Kanto, T., Kalinski, P., Hunter, O.C., Lotze, M.T. & Amoscato, A.A. Ceramide mediates tumor-induced dendritic cell apoptosis. J. Immunol. 167, 3773–3784 (2001).

    CAS  PubMed  Google Scholar 

  26. Mochizuki, T. et al. Akt protein kinase inhibits non-apoptotic programmed cell death induced by ceramide. J. Biol. Chem. 277, 2790–2797 (2002).

    CAS  PubMed  Google Scholar 

  27. Guha, M. et al. Lipopolysaccharide activation of the MEK-ERK1/2 pathway in human monocytic cells mediates tissue factor and tumor necrosis factor alpha expression by inducing Elk-1 phosphorylation and Egr-1 expression. Blood 98, 1429–1439 (2001).

    CAS  PubMed  Google Scholar 

  28. Okugawa, S. et al. Janus kinase 2 is involved in lipopolysaccharide-induced activation of macrophages. Am. J. Physiol. Cell Physiol. 285, C399–C408 (2003).

    CAS  PubMed  Google Scholar 

  29. Napolitani, G., Bortoletto, N., Racioppi, L., Lanzavecchia, A. & D'Oro, U. Activation of src-family tyrosine kinases by LPS regulates cytokine production in dendritic cells by controlling AP-1 formation. Eur. J. Immunol. 33, 2832–2841 (2003).

    CAS  PubMed  Google Scholar 

  30. Woltman, A.M. et al. Rapamycin specifically interferes with GM-CSF signaling in human dendritic cells, leading to apoptosis via increased p27KIP1 expression. Blood 101, 1439–1445 (2003).

    CAS  PubMed  Google Scholar 

  31. Granucci, F. et al. Inducible IL-2 production by dendritic cells revealed by global gene expression analysis. Nat. Immunol. 2, 882–888 (2001).

    CAS  PubMed  Google Scholar 

  32. Gallucci, S., Lolkema, M. & Matzinger, P. Natural adjuvants: endogenous activators of dendritic cells. Nat. Med. 5, 1249–1255 (1999).

    CAS  PubMed  Google Scholar 

  33. Katome, T. et al. Use of RNA interference-mediated gene silencing and adenoviral overexpression to elucidate the roles of AKT/protein kinase B isoforms in insulin actions. J. Biol. Chem. 278, 28312–28323 (2003).

    CAS  PubMed  Google Scholar 

  34. Arbibe, L. et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat. Immunol. 1, 533–540 (2000).

    CAS  PubMed  Google Scholar 

  35. Fujio, Y. & Walsh, K. Akt mediates cytoprotection of endothelial cells by vascular endothelial growth factor in an anchorage-dependent manner. J. Biol. Chem. 274, 16349–16354 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Mukherjee, A., Arnaud, L. & Cooper, J.A. Lipid-dependent recruitment of neuronal Src to lipid rafts in the brain. J. Biol. Chem. 278, 40806–40814 (2003).

    CAS  PubMed  Google Scholar 

  37. Li, B., Desai, S.A., MacCorkle-Chosnek, R.A., Fan, L. & Spencer, D.M. A novel conditional Akt 'survival switch' reversibly protects cells from apoptosis. Gene Ther. 9, 233–244 (2002).

    CAS  PubMed  Google Scholar 

  38. Sporri, R. & Reis e Sousa, C. Inflammatory mediators are insufficient for full dendritic cell activation and promote expansion of CD4+ T cell populations lacking helper function. Nat. Immunol. 6, 163–170 (2005).

    PubMed  Google Scholar 

  39. van Elsas, A. et al. Elucidating the autoimmune and antitumor effector mechanisms of a treatment based on cytotoxic T lymphocyte antigen-4 blockade in combination with a B16 melanoma vaccine: comparison of prophylaxis and therapy. J. Exp. Med. 194, 481–489 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Napolitani, G., Rinaldi, A., Bertoni, F., Sallusto, F. & Lanzavecchia, A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat. Immunol. 6, 769–776 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jonuleit, H. et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur. J. Immunol. 27, 3135–3142 (1997).

    CAS  PubMed  Google Scholar 

  42. Xu, J., Liu, D. & Songyang, Z. The role of Asp-462 in regulating Akt activity. J. Biol. Chem. 277, 35561–35566 (2002).

    CAS  PubMed  Google Scholar 

  43. Riesterer, O., Zingg, D., Hummerjohann, J., Bodis, S. & Pruschy, M. Degradation of PKB/Akt protein by inhibition of the VEGF receptor/mTOR pathway in endothelial cells. Oncogene 23, 4624–4635 (2004).

    CAS  PubMed  Google Scholar 

  44. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881 (2002).

    CAS  PubMed  Google Scholar 

  45. Martin, M., Rehani, K., Jope, R.S. & Michalek, S.M. Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat. Immunol. 6, 777–784 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Del Prete, A. et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kgamma-deficient mice. EMBO J. 23, 3505–3515 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. Nat. Rev. Immunol. 3, 169–176 (2003).

    CAS  PubMed  Google Scholar 

  48. Lutgens, E. et al. Requirement for CD154 in the progression of atherosclerosis. Nat. Med. 5, 1313–1316 (1999).

    CAS  PubMed  Google Scholar 

  49. Inaba, K. et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J. Exp. Med. 176, 1693–1702 (1992).

    CAS  PubMed  Google Scholar 

  50. Nikitina, E.Y. et al. Versatile prostate cancer treatment with inducible caspase and interleukin-12. Cancer Res. 65, 4309–4319 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to B.A. Hanks, E.Yu. Nikitina, Rama Gangula, J. Lim, S. Nam and M. Kim for advice and technical assistance, C.M. Rooney, E.Yu. Nikitina and D. Lewis for a critical reading of the manuscript and to K. Walsh for providing the recombinant adenovirus encoding constitutively active Akt (Ad-M-Akt). This work was supported by Department of Defense grant no. DAMD17-03-1-0156 and generous donations from the Baylor College of Medicine Prostate Cancer Research Initiative (PCRI).

Author information

Authors and Affiliations

Authors

Contributions

D.P. designed and performed most of the experiments and co-wrote the paper; N.L. performed most of the human DC experiments (Fig. 6); M.S. provided technical support for plasmid preparation, mouse breeding and tumor measurement, K.M.S. advised on the study; D.M.S. co-designed the study, advised on experiments and co-wrote the manuscript.

Corresponding author

Correspondence to David M Spencer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Role of Akt-1 in DC survival. (PDF 198 kb)

Supplementary Fig. 2

Analysis of surface markers of Akt1+/+ or Akt1−/− DCs. (PDF 870 kb)

Supplementary Fig. 3

Development of improved constitutive Akt1. (PDF 1054 kb)

Supplementary Fig. 4

Treatment of subcutaneous tumors with MF-ΔAkt-DCs. (PDF 870 kb)

Supplementary Fig. 5

Vaccination with MF-ΔAkt-DCs leads to antigen-specific memory. (PDF 132 kb)

Supplementary Fig. 6

Enhanced efficacy of MF-ΔhAkt-MoDCs. (PDF 379 kb)

Supplementary Methods (DOC 26 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, D., Lapteva, N., Seethammagari, M. et al. An essential role for Akt1 in dendritic cell function and tumor immunotherapy. Nat Biotechnol 24, 1581–1590 (2006). https://doi.org/10.1038/nbt1262

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1262

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing