Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons

Abstract

Using 62 probe-level datasets obtained with a custom-designed Caulobacter crescentus microarray chip, we identify transcriptional start sites of 769 genes, 53 of which are transcribed from multiple start sites. Transcriptional start sites are identified by analyzing probe signal cross-correlation matrices created from probe pairs tiled every 5 bp upstream of the genes. Signals from probes binding the same message are correlated. The contribution of each promoter for genes transcribed from multiple promoters is identified. Knowing the transcription start site enables targeted searching for regulatory-protein binding motifs in the promoter regions of genes with similar expression patterns. We identified 27 motifs, 17 of which share no similarity to the characterized motifs of other C. crescentus transcriptional regulators. Using these motifs, we predict coregulated genes. We verified novel promoter motifs that regulate stress-response genes, including those responding to uranium challenge, a stress-response sigma factor and a stress-response noncoding RNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transcriptional start-site identification.
Figure 2: Genes with multiple start sites.
Figure 3: Motifs identified from cell cycle dataset.
Figure 4: Motifs identified from heavy metal stress response data.
Figure 5: Comparison of motif searching with and without transcriptional start sites.
Figure 6: CauloHI1 Affymetrix microarray design.

Similar content being viewed by others

References

  1. McAdams, H.H. & Shapiro, L. A bacterial cell-cycle regulatory network operating in time and space. Science 301, 1874–1877 (2003).

    Article  CAS  Google Scholar 

  2. Ausmees, N. & Jacobs-Wagner, C. Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu. Rev. Microbiol. 57, 225–247 (2003).

    Article  CAS  Google Scholar 

  3. Skerker, J.M. & Laub, M.T. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat. Rev. Microbiol. 2, 325–337 (2004).

    Article  CAS  Google Scholar 

  4. Viollier, P.H. & Shapiro, L. Spatial complexity of mechanisms controlling a bacterial cell cycle. Curr. Opin. Microbiol. 7, 572–578 (2004).

    Article  CAS  Google Scholar 

  5. Laub, M.T., McAdams, H.H., Feldblyum, T., Fraser, C.M. & Shapiro, L. Global analysis of the genetic network controlling a bacterial cell cycle. Science 290, 2144–2148 (2000).

    Article  CAS  Google Scholar 

  6. Collier, J., Murray, S.R. & Shapiro, L. DnaA couples DNA replication and the expression of two cell cycle master regulators. EMBO J. 25, 346–356 (2006).

    Article  CAS  Google Scholar 

  7. Hottes, A.K., Shapiro, L. & McAdams, H.H. DnaA coordinates replication initiation and cell cycle transcription in Caulobacter crescentus. Mol. Microbiol. 58, 1340–1353 (2005).

    Article  CAS  Google Scholar 

  8. Holtzendorff, J. et al. Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304, 983–987 (2004).

    Article  CAS  Google Scholar 

  9. Quon, K.C., Yang, B., Domian, I.J., Shapiro, L. & Marczynski, G.T. Negative control of bacterial DNA replication by a cell cycle regulatory protein that binds at the chromosome origin. Proc. Natl. Acad. Sci. USA 95, 120–125 (1998).

    Article  CAS  Google Scholar 

  10. Laub, M.T., Chen, S.L., Shapiro, L. & McAdams, H.H. Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. USA 99, 4632–4637 (2002).

    Article  CAS  Google Scholar 

  11. Gomes, S.L., Gober, J.W. & Shapiro, L. Expression of the Caulobacter heat shock gene dnaK is developmentally controlled during growth at normal temperatures. J. Bacteriol. 172, 3051–3059 (1990).

    Article  CAS  Google Scholar 

  12. Crosson, S., McGrath, P.T., Stephens, C., McAdams, H.H. & Shapiro, L. Conserved modular design of an oxygen sensory/signaling network with species-specific output. Proc. Natl. Acad. Sci. USA 102, 8018–8023 (2005).

    Article  CAS  Google Scholar 

  13. Hu, P., Brodie, E.L., Suzuki, Y., McAdams, H.H. & Andersen, G.L. Whole Genome Transcriptional Analysis of Heavy Metal Stresses in Caulobacter crescentus. J. Bacteriol. 187, 8437–8449 (2005).

    Article  CAS  Google Scholar 

  14. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. & Church, G.M. Systematic determination of genetic network architecture. Nat. Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  15. Tjaden, B., Haynor, D.R., Stolyar, S., Rosenow, C. & Kolker, E. Identifying operons and untranslated regions of transcripts using Escherichia coli RNA expression analysis. Bioinformatics 18 Suppl 1, S337–S344 (2002).

    Article  Google Scholar 

  16. Kelly, A.J., Sackett, M.J., Din, N., Quardokus, E. & Brun, Y.V. Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev. 12, 880–893 (1998).

    Article  CAS  Google Scholar 

  17. Mullin, D.A. & Newton, A. Ntr-like promoters and upstream regulatory sequence ftr are required for transcription of a developmentally regulated Caulobacter crescentus flagellar gene. J. Bacteriol. 171, 3218–3227 (1989).

    Article  CAS  Google Scholar 

  18. McGrath, P.T., Iniesta, A.A., Ryan, K.R., Shapiro, L. & McAdams, H.H. A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124, 535–547 (2006).

    Article  CAS  Google Scholar 

  19. Roberts, R.C. & Shapiro, L. Transcription of genes encoding DNA replication proteins is coincident with cell cycle control of DNA replication in Caulobacter crescentus. J. Bacteriol. 179, 2319–2330 (1997).

    Article  CAS  Google Scholar 

  20. Osteras, M., Stotz, A., Schmid Nuoffer, S. & Jenal, U. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. J. Bacteriol. 181, 3039–3050 (1999).

    Article  CAS  Google Scholar 

  21. Bailey, T.L. & Elkan, C. Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc. Int. Conf. Intell. Syst. Mol. Biol. 2, 28–36 (1994).

    CAS  PubMed  Google Scholar 

  22. Liu, X., Brutlag, D.L. & Liu, J.S. BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput, 127–138 (2001).

  23. Bailey, T.L. & Gribskov, M. Combining evidence using p-values: application to sequence homology searches. Bioinformatics 14, 48–54 (1998).

    Article  CAS  Google Scholar 

  24. Herring, C.D. et al. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J. Bacteriol. 187, 6166–6174 (2005).

    Article  CAS  Google Scholar 

  25. Reisenauer, A., Mohr, C.D. & Shapiro, L. Regulation of a heat shock sigma32 homolog in Caulobacter crescentus. J. Bacteriol. 178, 1919–1927 (1996).

    Article  CAS  Google Scholar 

  26. Craven, M., Page, D., Shavlik, J., Bockhorst, J. & Glasner, J. A probabilistic learning approach to whole-genome operon prediction. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 116–127 (2000).

    CAS  PubMed  Google Scholar 

  27. Gober, J.W. & Shapiro, L. A developmentally regulated Caulobacter flagellar promoter is activated by 3′ enhancer and IHF binding elements. Mol. Biol. Cell 3, 913–926 (1992).

    Article  CAS  Google Scholar 

  28. Helmann, J.D. The extracytoplasmic function (ECF) sigma factors. Adv. Microb. Physiol. 46, 47–110 (2002).

    Article  CAS  Google Scholar 

  29. Brun, Y.V. & Shapiro, L. A temporally controlled sigma-factor is required for polar morphogenesis and normal cell division in Caulobacter. Genes Dev. 6, 2395–2408 (1992).

    Article  CAS  Google Scholar 

  30. Malakooti, J., Wang, S.P. & Ely, B. A consensus promoter sequence for Caulobacter crescentus genes involved in biosynthetic and housekeeping functions. J. Bacteriol. 177, 4372–4376 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Esteban Toro for comments on the manuscript and Michael Laub and Michael Mittman for assistance in designing the CauloHI1 chip. This work was supported by National Institute of Health (NIH) grants GM32506 (L.S.) and 5R24GM73011-2 (H.H.M., L.S.), Department of Energy Office of Science grant DE-FG02-01ER63219 (H.H.M., L.S.), NIH training grant T32 HG00044 (P.T.M.) and Damon Runyon Cancer Research Foundation Fellowship DRG-1880-05 (N.J.H.). P.H. was funded by the DOE Genomes to Life program under the auspices of the University of California, Lawrence Berkeley National Laboratory, Contract no. DE-AC02-05CH11231. H.L. was supported by a Stanford Graduate Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harley H McAdams.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Correlation Tables for dnaN (CC0156) and clpX (CC1961) (PDF 239 kb)

Supplementary Fig. 2

Correlation tables for CC2510 (PDF 19 kb)

Supplementary Fig. 3

Cluster diagram of co-expressed genes in cell cycle microarray experiments (PDF 43 kb)

Supplementary Fig. 4

Cluster diagram of coexpressed genes from heavy metal response data (PDF 33 kb)

Supplementary Fig. 5

cc_2 promoter site (PDF 11 kb)

Supplementary Fig. 6

cc_3 is a FixK binding site (PDF 13 kb)

Supplementary Fig. 7

cc_7 is a SigU binding site (PDF 15 kb)

Supplementary Fig. 8

m_5 in the CC1891 promoter (PDF 14 kb)

Supplementary Fig. 9

Motif cc_5 is the RNAP sigma 54 binding motif (PDF 12 kb)

Supplementary Table 1

Motif Summary (PDF 13 kb)

Supplementary Methods (PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGrath, P., Lee, H., Zhang, L. et al. High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25, 584–592 (2007). https://doi.org/10.1038/nbt1294

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1294

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing