Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Expression monitoring by hybridization to high-density oligonucleotide arrays

Abstract

The human genome encodes approximately 100,000 different genes, and at least partial sequence information for nearly all will be available soon. Sequence information alone, however, is insufficient for a full understanding of gene function, expression, regulation, and splice-site variation. Because cellular processes are governed by the repertoire of expressed genes, and the levels and timing of expression, it is important to have experimental tools for the direct monitoring of large numbers of mRNAs in parallel. We have developed an approach that is based on hybridization to small, high-density arrays containing tens of thousands of synthetic oligonucleotides. The arrays are designed based on sequence information alone and are synthesized in situ using a combination of photolithography and oligonucleotide chemistry. RNAs present at a frequency of 1:300,000 are unambiguously detected, and detection is quantitative over more than three orders of magnitude. This approach provides a way to use directly the growing body of sequence information for highly parallel experimental investigations. Because of the combinatorial nature of the chemistry and the ability to synthesize small arrays containing hundreds of thousands of specifically chosen oligonucleotides, the method is readily scalable to the simultaneous monitoring of tens of thousands of genes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fodor, S.P.A., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T. and Solas, D. 1991. Light-directed, spatially addressable parallel chemical synthesis. Science 251: 767–773.

    Article  CAS  Google Scholar 

  2. Fodor, S.P.A., Rava, R.P., Huang, X.C., Pease, A.C., Holmes, C.P. and Adams, C.L. 1993. Multiplexed biochemical assays with biological chips. Science 364: 555–556.

    CAS  Google Scholar 

  3. Pease, A.C., Solas, D., Sullivan, E.J., Cronin, M.T., Holmes, C.P. and Fodor, S.P.A. 1994. Light-directed oligonucleotide arrays for rapid DNA sequence analysis. Proc. Natl. Acad. Sci. USA 91: 5022–5026.

    Article  CAS  Google Scholar 

  4. Lipshutz, R.J., Morris, D., Ghee, M., Hubbell, E., Kozal, N.S., Shen, N. et al. 1995. Using oligonucleotide probe arrays to access genetic diversity. Bio Techniques 19: 442–447.

    CAS  Google Scholar 

  5. Chee, M.S., Huang, X., Yang, R., Hubbell, E., Berno, A., Stern, D. et al. 1996. Accessing genetic information with high-density DNA arrays. Science 274: 610–614.

    Article  CAS  Google Scholar 

  6. Liang, P. and Pardee, A.B. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967–971.

    Article  CAS  Google Scholar 

  7. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H. et al. 1991. Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252: 1651–1656.

    Article  CAS  Google Scholar 

  8. Okubo, K., Hori, N., Matoba, R., Niiyama, T., Fukushima, A., Kojima, Y. et al. 1992. Large scale cDNA sequencing for analysis of quantitative and qualitative aspects of gene expression. Nature Genetics 2: 173–179.

    Article  CAS  Google Scholar 

  9. Velculescu, V.E., Zhang, L., Vogelstein, B. and Kinzler, K.W. 1995. Serial analysis of gene expression. Science 270: 484–487.

    Article  CAS  Google Scholar 

  10. Lennon, G.G. and Lehrach, H. 1991. Hybridization analyses of arrayed cDNA libraries. Trends in Genetics 7: 314–317.

    Article  CAS  Google Scholar 

  11. Gress, T.M., Hoheisel, J.D., Lennon, G.G., Zehetner, G. and Lehrach, H. 1992. Hybridization fingerprinting of high-density cDNA-library arrays with cDNA pools derived from whole tissues. Mammalian Genome 3: 609–619.

    Article  CAS  Google Scholar 

  12. Meier-Ewert, S., Maier, E., Ahmadi, A., Curtis, J. and Lehrach, H. 1993. An automated approach to generating expressed sequence catalogues. Nature 361: 375–376.

    Article  CAS  Google Scholar 

  13. Nguyen, C., Rocha, D., Granjeaud, S., Baldit, M., Bernard, K., Naquet, P. et al. 1995. Differential gene expression in the murine thymus assayed by quantitative hybridization of arrayed cDNA clones. Genomics 29: 207–216.

    Article  CAS  Google Scholar 

  14. Zhao, N., Hashida, H., Takahashi, N., Misumi, Y. and Sakaki, Y. 1995. High-density cDNA filter analysis: a novel approach for large-scale, quantitative analysis of gene expression. Gene 156: 207–213.

    Article  CAS  Google Scholar 

  15. Takahashi, N., Hashida, H., Zhao, N., Misumi, Y. and Sakaki, Y. 1995. High-density cDNA filter analysis of the expression profiles of the genes preferentially expressed in human brain. Gene 164: 219–227.

    Article  CAS  Google Scholar 

  16. Milosavljevic, A., Zeremski, M., Strezoska, Z., Grujic, D., Dyanov, H., Batus, S. et al. 1996. Discovering distinct genes represented in 29,570 clones from infant brain cDNA libraries by applying sequencing by hybridization methodology. Genome Research 6: 132–141.

    Article  CAS  Google Scholar 

  17. Pietu, G., Alibert, O., Guichard, V., Lamy, B., Bois, F., Leroy, E. et al. 1996. Novel gene transcripts preferentially expressed in human muscles revealed by quantitative hybridization of a high density cDNA array. Genome Research 6: 492–503.

    Article  CAS  Google Scholar 

  18. Schena, M., Shalon, D., Davis, R.W. and Brown, P.O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.

    Article  CAS  Google Scholar 

  19. Shalon, D., Smith, S.J. and Brown, P.O. 1996. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Research 6: 639–645.

    Article  CAS  Google Scholar 

  20. Lewin, B. 1980. Gene Expression Vol. 2. Wiley-lnterscience, New York, NY.

    Google Scholar 

  21. Himes, S.R., Katsikeros, R. and Shannon, M.F. 1996. Costimulation of cytokine gene expression in T cells by the human T leukemia/lymphotropic virus type 1 trans activator Tax. J. Virology 70: 4001–4008.

    CAS  PubMed  Google Scholar 

  22. D'Andrea, A., Rengaraju, M., Valiante, N.M., Chehimi, J., Kubin, M., Aste, M. et al. 1992. Production of natural killer cell stimulatory factor (Interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176: 1387–1398.

    Article  CAS  Google Scholar 

  23. Favaloro, J., Treisman, R. and Kamen, R. 1980. Transcription maps of polyoma virus-specific RNA: Analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 65: 718–749.

    Article  CAS  Google Scholar 

  24. Van Gelder, R.N., von Zastrow, M.E., Yool, A., Dement, W.C., Barchas, J., and Eberwine, J.H. 1990. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Science USA 87: 1663–1667.

    Article  CAS  Google Scholar 

  25. Eberwine, J., Yeh, H., Miyashiro, K., Cao, Y., Nair, S., Finnell, R. et al. 1992. Analysis of gene expression in single live neurons. Proc. Natl. Acad. Sci. USA 89: 3010–3014.

    Article  CAS  Google Scholar 

  26. Nordan, R.P. and Potter, M. 1986. A macrophage-derived factor required by plasmacytomas for survival and proliferation in vitro. Science 233: 566–569.

    Article  CAS  Google Scholar 

  27. Toole, J.J., Knopf, J.L., Wozney, J.M., Sultzman, L.A., Buecker, J.L., Pittman, D.D. et al. 1984. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 312: 342–347.

    Article  CAS  Google Scholar 

  28. Maruo, S., Toyo-oka, K., Oh-hora, M., Tai, X.-G., Iwata, H., Takenaka, H. et al. 1996. IL-12 produced by antigen-presenting cells induces IL-2-independent proliferation of T helper cell clones. J. Immunol. 156: 1748–1755.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockhart, D., Dong, H., Byrne, M. et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14, 1675–1680 (1996). https://doi.org/10.1038/nbt1296-1675

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1296-1675

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing