Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Phosphospecific proteolysis for mapping sites of protein phosphorylation

A Corrigendum to this article was published on 01 November 2003

Abstract

Protein phosphorylation is a dominant mechanism of information transfer in cells, and a major goal of current proteomic efforts is to generate a system-level map describing all the sites of protein phosphorylation. Recent efforts have focused on developing technologies for enriching and quantifying phosphopeptides. Identification of the sites of phosphorylation typically relies on tandem mass spectrometry to sequence individual peptides. Here we describe an approach for phosphopeptide mapping that makes it possible to interrogate a protein sequence directly with a protease that recognizes sites of phosphorylation. The key to this approach is the selective chemical transformation of phosphoserine and phosphothreonine residues into lysine analogs (aminoethylcysteine and β-methylaminoethylcysteine, respectively). Aminoethylcysteine-modified peptides are then cleaved with a lysine-specific protease to map sites of phosphorylation. A blocking step enables single-site cleavage, and adaptation of this reaction to the solid phase facilitates phosphopeptide enrichment and modification in one step.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Aminoethylcysteine modification of phosphoserine.
Figure 2: Mass spectra of aminoethylcysteine-modified β-casein.
Figure 3: MALDI-MS spectra of aminoethylcysteine-modified phosphopeptides.
Figure 4: Solid-phase aminoethylcysteine reaction.

Similar content being viewed by others

References

  1. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  Google Scholar 

  2. Manning, G., Whyte, D.B., Martinez, R., Hunter, T. & Sudarsanam, S. The protein kinase complement of the human genome. Science 298, 1912–1934 (2002).

    Article  CAS  Google Scholar 

  3. Shah, K. & Shokat, K.M. A chemical genetic screen for direct v-Src substrates reveals ordered assembly of a retrograde signaling pathway. Chem. Biol. 9, 35–47 (2002).

    Article  CAS  Google Scholar 

  4. Bishop, A.C. et al. A chemical switch for inhibitor-sensitive alleles of any protein kinase. Nature 407, 395–401 (2000).

    Article  CAS  Google Scholar 

  5. McLachlin, D.T. & Chait, B.T. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr. Opin. Chem. Biol. 5, 591–602 (2001).

    Article  CAS  Google Scholar 

  6. Mann, M. et al. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol. 20, 261–268 (2002).

    Article  CAS  Google Scholar 

  7. Zhou, H., Watts, J.D. & Aebersold, R. A systematic approach to the analysis of protein phosphorylation. Nat. Biotechnol. 19, 375–378 (2001).

    Article  CAS  Google Scholar 

  8. Oda, Y., Nagasu, T. & Chait, B.T. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat. Biotechnol. 19, 379–382 (2001).

    Article  CAS  Google Scholar 

  9. Steen, H. & Mann, M. A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J. Am. Soc. Mass Spectrom. 13, 996–1003 (2002).

    Article  CAS  Google Scholar 

  10. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    Article  CAS  Google Scholar 

  11. Meyer, H.E., Hoffmann-Posorske, E., Korte, H. & Heilmeyer, L.M. Jr. Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett. 204, 61–66 (1986).

    Article  CAS  Google Scholar 

  12. Simpson, D.L., Hranisavljevic, J. & Davidson, E.A. Elimination and sulfite addition as a means of localization and identification of substituted seryl and threonyl residues in proteins and proteoglycans. Biochemistry 11, 1849–1856 (1972).

    Article  CAS  Google Scholar 

  13. Byford, M.F. Rapid and selective modification of phosphoserine residues catalysed by Ba2+ ions for their detection during peptide microsequencing. Biochem. J. 280 (Pt 1), 261–265 (1991).

    Article  Google Scholar 

  14. Adamczyk, M., Gebler, J.C. & Wu, J. Selective analysis of phosphopeptides within a protein mixture by chemical modification, reversible biotinylation and mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1481–1488 (2001).

    Article  CAS  Google Scholar 

  15. Goshe, M.B. et al. Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. Anal. Chem. 73, 2578–2586 (2001).

    Article  CAS  Google Scholar 

  16. Jaffe, H., Veeranna & Pant, H.C. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Biochemistry 37, 16211–16224 (1998).

    Article  CAS  Google Scholar 

  17. Annan, R.S., Huddleston, M.J., Verma, R., Deshaies, R.J. & Carr, S.A. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal. Chem. 73, 393–404 (2001).

    Article  CAS  Google Scholar 

  18. Janek, K., Wenschuh, H., Bienert, M. & Krause, E. Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 15, 1593–1599 (2001).

    Article  CAS  Google Scholar 

  19. Limas, C.J. & Limas, C. Involvement of microtubules in the isoproterenol-induced 'down'-regulation of myocardial beta-adrenergic receptors. Biochim. Biophys. Acta 735, 181–184 (1983).

    Article  CAS  Google Scholar 

  20. Haga, K., Ogawa, H., Haga, T. & Murofushi, H. GTP-binding-protein-coupled receptor kinase 2 (GRK2) binds and phosphorylates tubulin. Eur. J. Biochem. 255, 363–368 (1998).

    Article  CAS  Google Scholar 

  21. Pitcher, J.A. et al. The G protein-coupled receptor kinase 2 is a microtubule-associated protein kinase that phosphorylates tubulin. J. Biol. Chem. 273, 12316–12324 (1998).

    Article  CAS  Google Scholar 

  22. Carman, C.V., Som, T., Kim, C.M. & Benovic, J.L. Binding and phosphorylation of tubulin by G protein-coupled receptor kinases. J. Biol. Chem. 273, 20308–20316 (1998).

    Article  CAS  Google Scholar 

  23. Banerjee, A. Coordination of posttranslational modifications of bovine brain alpha-tubulin. Polyglycylation of delta2 tubulin. J. Biol. Chem. 277, 46140–46144 (2002).

    Article  CAS  Google Scholar 

  24. Alexander, J.E. et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc. Natl. Acad. Sci. USA 88, 4685–4689 (1991).

    Article  CAS  Google Scholar 

  25. Yoshida, N., Haga, K. & Haga, T. Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in beta-tubulin. Eur. J. Biochem. 270, 1154–1163 (2003).

    Article  CAS  Google Scholar 

  26. Pitcher, J.A. et al. Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J. Biol. Chem. 274, 34531–34534 (1999).

    Article  CAS  Google Scholar 

  27. Beardsley, R.L., Karty, J.A. & Reilly, J.P. Enhancing the intensities of lysine-terminated tryptic peptide ions in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2147–2153 (2000).

    Article  CAS  Google Scholar 

  28. Beardsley, R.L. & Reilly, J.P. Optimization of guanidination procedures for MALDI mass mapping. Anal. Chem. 74, 1884–1890 (2002).

    Article  CAS  Google Scholar 

  29. Brancia, F.L., Oliver, S.G. & Gaskell, S.J. Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following guanidination of lysine-containing peptides. Rapid Commun. Mass Spectrom. 14, 2070–2073 (2000).

    Article  CAS  Google Scholar 

  30. Cupo, P., El-Deiry, W., Whitney, P.L. & Awad, W.M. Jr. Stabilization of proteins by guanidination. J. Biol. Chem. 255, 10828–10833 (1980).

    CAS  PubMed  Google Scholar 

  31. Kimmel, J.R. Guanidination of Proteins. Methods Enzymol. 11, 584–589 (1967).

    Article  CAS  Google Scholar 

  32. Mega, T., Nakamura, N. & Ikenaka, T. Modifications of substituted seryl and threonyl residues in phosphopeptides and a polysialoglycoprotein by beta-elimination and nucleophile additions. J. Biochem. (Tokyo) 107, 68–72 (1990).

    Article  CAS  Google Scholar 

  33. Wells, L.V. et al. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Molecular and Cellular Proteomics 1, 791–804 (2002).

    Article  CAS  Google Scholar 

  34. Greis, K.D. et al. Selective detection and site-analysis of O-GlcNAc-modified glycopeptides by beta-elimination and tandem electrospray mass spectrometry. Anal. Biochem. 234, 38–49 (1996).

    Article  CAS  Google Scholar 

  35. Meldal, M. & Breddam, K. Anthranilamide and nitrotyrosine as a donor-acceptor pair in internally quenched fluorescent substrates for endopeptidases: multicolumn peptide synthesis of enzyme substrates for subtilisin Carlsberg and pepsin. Anal. Biochem. 195, 141–147 (1991).

    Article  CAS  Google Scholar 

  36. Bonetto, V., Bergman, A.C., Jornvall, H. & Sillard, R. C-terminal sequence analysis of peptides and proteins using carboxypeptidases and mass spectrometry after derivatization of Lys and Cys residues. Anal. Chem. 69, 1315–1319 (1997).

    Article  CAS  Google Scholar 

  37. Kim, C.M., Dion, S.B., Onorato, J.J. & Benovic, J.L. Expression and characterization of two beta-adrenergic receptor kinase isoforms using the baculovirus expression system. Receptor 3, 39–55 (1993).

    CAS  PubMed  Google Scholar 

  38. Dorff, P.a.H. & Hauske, J.R. A Solid Phase CBZ Chloride Equivalent - A New Matrix Specific Linker. Tetrahedron Lett. 36, 1589–1592 (1995).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Matt Simon and Dustin Maly for helpful advice. Z.A.K. is a Howard Hughes Medical Institute Predoctoral Fellow. K.M.S. acknowledges support from the National Institutes of Health (EB001987).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevan M Shokat.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knight, Z., Schilling, B., Row, R. et al. Phosphospecific proteolysis for mapping sites of protein phosphorylation. Nat Biotechnol 21, 1047–1054 (2003). https://doi.org/10.1038/nbt863

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt863

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing