Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Harnessing the potential of induced pluripotent stem cells for regenerative medicine

A Corrigendum to this article was published on 01 June 2011

Abstract

The discovery of methods to convert somatic cells into induced pluripotent stem cells (iPSCs) through expression of a small combination of transcription factors has raised the possibility of producing custom-tailored cells for the study and treatment of numerous diseases. Indeed, iPSCs have already been derived from patients suffering from a large variety of disorders. Here we review recent progress that has been made in establishing iPSC-based disease models, discuss associated technical and biological challenges, and highlight possible solutions to overcome these barriers. We believe that a better understanding of the molecular basis of pluripotency, cellular reprogramming and lineage-specific differentiation of iPSCs is necessary for progress in regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the potential utility of iPSC technology in regenerative medicine.
Figure 2: Xenogeneic rat-mouse chimaera to produce entirely iPSC-derived rat pancreas.

Similar content being viewed by others

Zixuan Zhao, Xinyi Chen, … Hanry Yu

References

  1. Briggs, R. & King, T. J. Transplantation of living nuclei from blastula cells into enucleated frogs' eggs. Proc. Natl Acad. Sci. USA 38, 455–463 (1952).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gurdon, J. B. The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J. Embryol. Exp. Morphol. 10, 622–640 (1962).

    CAS  PubMed  Google Scholar 

  3. Stadtfeld, M. & Hochedlinger, K. Induced pluripotency: history, mechanisms, and applications. Genes Dev. 24, 2239–2263 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Rideout, W. M. III, Hochedlinger, K., Kyba, M., Daley, G. Q. & Jaenisch, R. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109, 17–27 (2002).

    CAS  PubMed  Google Scholar 

  5. Schnieke, A.E. et al. Human factor IX transgenic sheep produced by transfer of nuclei from transfected fetal fibroblasts. Science 278, 2130–2133 (1997).

    CAS  PubMed  Google Scholar 

  6. Hochedlinger, K. & Jaenisch, R. Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature 415, 1035–1038 (2002).

    CAS  PubMed  Google Scholar 

  7. Lee, B. C. et al. Dogs cloned from adult somatic cells. Nature 436, 641 (2005).

    CAS  PubMed  Google Scholar 

  8. Yin, X. J. et al. Cats cloned from fetal and adult somatic cells by nuclear transfer. Reproduction 129, 245–249 (2005).

    CAS  PubMed  Google Scholar 

  9. Li, S., Chen, X., Fang, Z., Shi, J. & Sheng, H. Z. Rabbits generated from fibroblasts through nuclear transfer. Reproduction 131, 1085–1090 (2006).

    CAS  PubMed  Google Scholar 

  10. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  11. Maherali, N. et al. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1, 55–70 (2007).

    CAS  PubMed  Google Scholar 

  12. Okita, K., Ichisaka, T. & Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 448, 313–317 (2007).

    CAS  PubMed  Google Scholar 

  13. Wernig, M. et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature 448, 318–324 (2007).

    CAS  PubMed  Google Scholar 

  14. Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 1–12 (2007).

    Google Scholar 

  15. Yu, J. et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 318, 1917–1920 (2007).

    CAS  PubMed  Google Scholar 

  16. Park, I. H. et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451, 141–146 (2008).

    CAS  PubMed  Google Scholar 

  17. Okita, K., Nakagawa, M., Hyenjong, H., Ichisaka, T. & Yamanaka, S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322, 949–953 (2008).

    CAS  PubMed  Google Scholar 

  18. Yu, J. et al. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324, 797–801 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stadtfeld, M., Nagaya, M., Utikal, J., Weir, G. & Hochedlinger, K. Induced pluripotent stem cells generated without viral integration. Science 322, 945–949 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Soldner, F. et al. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136, 964–977 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, D. et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4, 472–476 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaji, K. et al. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458, 771–775 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Haase, A. et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5, 434–441 (2009).

    CAS  PubMed  Google Scholar 

  24. Lowry, W.E. et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc. Natl Acad. Sci. USA 105, 2883–2888 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Loh, Y.H. et al. Generation of induced pluripotent stem cells from human blood. Blood 113, 5476–5479 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Kunisato, A. et al. Direct generation of induced pluripotent stem cells from human non-mobilized blood. Stem Cells Dev. 20, 159–168 (2011).

    CAS  PubMed  Google Scholar 

  27. Aasen, T. et al. Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat. Biotechnol. 26, 1276–1284 (2008).

    CAS  PubMed  Google Scholar 

  28. Ebert, A. D. et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457, 277–280 (2009).

    CAS  PubMed  Google Scholar 

  29. Carvajal-Vergara, X. et al. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Moretti, A. et al. Patient-specific induced pluripotent stem-cell models for long-QT syndrome. N. Engl. J. Med. 363, 1397–1409 (2010).

    CAS  PubMed  Google Scholar 

  31. Yazawa, M. et al. Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome. Nature 471, 230–234 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Marchetto, M. C. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee, G. et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461, 402–406 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J. et al. A human iPSC model of Hutchinson Gilford progeria reveals vascular smooth muscle and mesenchymal stem cell defects. Cell Stem Cell 8, 31–45 (2011).

    CAS  PubMed  Google Scholar 

  35. Liu, G.H. et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome. Nature advance online publication, 10.1038/nature09879 (23 February 2011).

  36. Hanna, J. et al. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318, 1920–1923 (2007).

    CAS  PubMed  Google Scholar 

  37. Wernig, M. et al. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc. Natl Acad. Sci. USA 105, 5856–5861 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, J. et al. Functional cardiomyocytes derived from human induced pluripotent stem cells. Circ. Res. 104, e30–e41 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Nelson, T. J. et al. Repair of acute myocardial infarction by human stemness factors induced pluripotent stem cells. Circulation 120, 408–416 (2009).

    PubMed  PubMed Central  Google Scholar 

  40. Murry, C. E. & Keller, G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell 132, 661–680 (2008).

    CAS  PubMed  Google Scholar 

  41. Kroon, E. et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 26, 443–452 (2008).

    CAS  PubMed  Google Scholar 

  42. Song, Z. et al. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. Cell Res. 19, 1233–1242 (2009).

    PubMed  Google Scholar 

  43. Green, M. D. et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat. Biotechnol. 29, 267–272 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Spence, J. R. et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470, 105–109 (2011).

    PubMed  Google Scholar 

  45. Wichterle, H., Lieberam, I., Porter, J. A. & Jessell, T. M. Directed differentiation of embryonic stem cells into motor neurons. Cell 110, 385–397 (2002).

    CAS  PubMed  Google Scholar 

  46. Kobayashi, T. et al. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142, 787–799 (2010).

    CAS  PubMed  Google Scholar 

  47. Coffin, J. M. & Stoye, J. P. Virology. A new virus for old diseases? Science 326, 530–531 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Di Giorgio, F. P., Boulting, G. L., Bobrowicz, S. & Eggan, K. C. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALS-causing mutation. Cell Stem Cell 3, 637–648 (2008).

    CAS  PubMed  Google Scholar 

  49. Marchetto, M. C. et al. Non-cell-autonomous effect of human SOD1 G37R astrocytes on motor neurons derived from human embryonic stem cells. Cell Stem Cell 3, 649–657 (2008).

    CAS  PubMed  Google Scholar 

  50. McNally, E. M. New approaches in the therapy of cardiomyopathy in muscular dystrophy. Annu. Rev. Med. 58, 75–88 (2007).

    CAS  PubMed  Google Scholar 

  51. Nguyen, H. N. et al. LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8, 267–280 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Swistowski, A. et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells 28, 1893-1904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Nizzardo, M. et al. Human motor neuron generation from embryonic stem cells and induced pluripotent stem cells. Cell Mol. Life Sci. 67, 3837–3847 (2010).

    CAS  PubMed  Google Scholar 

  54. Yang, L. et al. Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population. Nature 453, 524–528 (2008).

    CAS  PubMed  Google Scholar 

  55. van Laake, L. W. et al. Human embryonic stem cell-derived cardiomyocytes survive and mature in the mouse heart and transiently improve function after myocardial infarction. Stem Cell Res. 1, 9–24 (2007).

    PubMed  Google Scholar 

  56. Laflamme, M. A. et al. Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nat. Biotechnol. 25, 1015–1024 (2007).

    CAS  PubMed  Google Scholar 

  57. Kattman, S. J. et al. Expression of Flk-1/KDR and PDGFR-α marks the emergence of cardiac mesoderm from mouse and human pluripotent stem cells. Cell Stem Cell 8, 228–240 (2011).

    CAS  PubMed  Google Scholar 

  58. Irion, S. et al. Temporal specification of blood progenitors from mouse embryonic stem cells and induced pluripotent stem cells. Development 137, 2829–2839 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Choi, K.D. et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells 27, 559–567 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Lengerke, C. et al. Hematopoietic development from human induced pluripotent stem cells. Ann. N. Y. Acad. Sci. 1176, 219–227 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma, Y. D., Lugus, J. J., Park, C. & Choi, K. Differentiation of mouse embryonic stem cells into blood. Curr. Protoc. Stem Cell Biol. Chapter 1, Unit 1F.4 (2008).

  62. D'Amour, K.A. et al. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat. Biotechnol. 23, 1534–1541 (2005).

    CAS  PubMed  Google Scholar 

  63. Borowiak, M. et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 4, 348–358 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Wu, X., Ding, S., Ding, Q., Gray, N. S. & Schultz, P. G. Small molecules that induce cardiomyogenesis in embryonic stem cells. J. Am. Chem. Soc. 126, 1590–1591 (2004).

    CAS  PubMed  Google Scholar 

  65. Hao, J. et al. Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS One 3, e2904 (2008).

    PubMed  PubMed Central  Google Scholar 

  66. Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275–280 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Desbordes, S. C. et al. High-throughput screening assay for the identification of compounds regulating self-renewal and differentiation in human embryonic stem cells. Cell Stem Cell 2, 602–612 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Swijnenburg, R.J. et al. Immunosuppressive therapy mitigates immunological rejection of human embryonic stem cell xenografts. Proc. Natl Acad. Sci. USA 105, 12991–12996 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Szabo, E. et al. Direct conversion of human fibroblasts to multilineage blood progenitors. Nature 468, 521–526 (2010).

    CAS  PubMed  Google Scholar 

  70. Ieda, M. et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell 142, 375–386 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Efe, J. A. et al. Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. Nat. Cell Biol. 13, 215–222 (2011).

    CAS  PubMed  Google Scholar 

  72. Davis, R. L., Weintraub, H. & Lassar, A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell 51, 987–1000 (1987).

    CAS  PubMed  Google Scholar 

  73. Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Sachinidis, A. et al. Cardiac specific differentiation of mouse embryonic stem cells. Cardiovasc. Res. 58, 278–291 (2003).

    CAS  PubMed  Google Scholar 

  75. Boheler, K. R. et al. Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189–201 (2002).

    CAS  PubMed  Google Scholar 

  76. Olivier, E. N., Qiu, C., Velho, M., Hirsch, R. E. & Bouhassira, E. E. Large-scale production of embryonic red blood cells from human embryonic stem cells. Exp. Hematol. 34, 1635–1642 (2006).

    CAS  PubMed  Google Scholar 

  77. Ma, F. et al. Generation of functional erythrocytes from human embryonic stem cell-derived definitive hematopoiesis. Proc. Natl Acad. Sci. USA 105, 13087–13092 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Domian, I. J. et al. Generation of functional ventricular heart muscle from mouse ventricular progenitor cells. Science 326, 426–429 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Madden, L.R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zimmermann, W. H. & Eschenhagen, T. Embryonic stem cells for cardiac muscle engineering. Trends Cardiovasc. Med. 17, 134–140 (2007).

    CAS  PubMed  Google Scholar 

  81. Menasche, P. et al. The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117, 1189–1200 (2008).

    PubMed  Google Scholar 

  82. Lunde, K. et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N. Engl. J. Med. 355, 1199–1209 (2006).

    CAS  PubMed  Google Scholar 

  83. Janssens, S. et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 367, 113–121 (2006).

    PubMed  Google Scholar 

  84. Petersen, T. H. et al. Tissue-engineered lungs for in vivo implantation. Science 329, 538–541 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ott, H. C. et al. Regeneration and orthotopic transplantation of a bioartificial lung. Nat. Med. 16, 927–933 (2010).

    CAS  PubMed  Google Scholar 

  86. Uygun, B. E. et al. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16, 814–820 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Ott, H. C. et al. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14, 213–221 (2008).

    CAS  PubMed  Google Scholar 

  88. Guenther, M. G. et al. Chromatin structure and gene expression programs of human embryonic and induced pluripotent stem cells. Cell Stem Cell 7, 249–257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Chin, M. H. et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell 5, 111–123 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Doi, A. et al. Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat. Genet. 41, 1350–1353 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Deng, J. et al. Targeted bisulfite sequencing reveals changes in DNA methylation associated with nuclear reprogramming. Nat. Biotechnol. 27, 353–360 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Hu, B. Y. et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc. Natl Acad. Sci. USA 107, 4335–4340 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Feng, Q. et al. Hemangioblastic derivatives from human induced pluripotent stem cells exhibit limited expansion and early senescence. Stem Cells 28, 704–712 (2010).

    PubMed  Google Scholar 

  94. Miura, K. et al. Variation in the safety of induced pluripotent stem cell lines. Nat. Biotechnol. 27, 743–745 (2009).

    CAS  PubMed  Google Scholar 

  95. Stadtfeld, M. et al. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465, 175–181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Newman, A. M. & Cooper, J. B. Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell 7, 258–262 (2010).

    CAS  PubMed  Google Scholar 

  97. Polo, J. M. et al. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat. Biotechnol. 28, 848–855 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Laurent, L. C. et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell 8, 106–118 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Hussein, S.M. et al. Copy number variation and selection during reprogramming to pluripotency. Nature 471, 58–62 (2011).

    CAS  PubMed  Google Scholar 

  100. Mayshar, Y. et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 7, 521–531 (2010).

    CAS  PubMed  Google Scholar 

  101. Gore, A. et al. Somatic coding mutations in human induced pluripotent stem cells. Nature 471, 63–67 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Osafune, K. et al. Marked differences in differentiation propensity among human embryonic stem cell lines. Nat. Biotechnol. 26, 313–315 (2008).

    CAS  PubMed  Google Scholar 

  103. Bock, C. et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell 144, 439–452 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Muller, F. J. et al. A bioinformatic assay for pluripotency in human cells. Nat. Methods 8, 315–317 (2011).

    PubMed  PubMed Central  Google Scholar 

  105. Strauss, S. Geron trial resumes, but standards for stem cell trials remain elusive. Nat. Biotechnol. 28, 989–990 (2010).

    CAS  PubMed  Google Scholar 

  106. Pearl, J. I. et al. Short-term immunosuppression promotes engraftment of embryonic and induced pluripotent stem cells. Cell Stem Cell 8, 309–317 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Dimos, J. T. et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321, 1218–1221 (2008).

    CAS  PubMed  Google Scholar 

  108. Park, I. H. et al. Disease-specific induced pluripotent stem cells. Cell 134, 877–886 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ku, S. et al. Friedreich's ataxia induced pluripotent stem cells model intergenerational GAATTC triplet repeat instability. Cell Stem Cell 7, 631–637 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460, 53–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Urbach, A., Bar-Nur, O., Daley, G.Q. & Benvenisty, N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell 6, 407–411 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Itzhaki, I. et al. Modelling the long QT syndrome with induced pluripotent stem cells. Nature 471, 225–229 (2011).

    CAS  PubMed  Google Scholar 

  113. Maehr, R. et al. Generation of pluripotent stem cells from patients with type 1 diabetes. Proc. Natl Acad. Sci. USA 106, 15768–15773 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Rashid, S. T. et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Invest. 120, 3127–3136 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Yang, J. et al. Induced pluripotent stem cells can be used to model the genomic imprinting disorder Prader-Willi syndrome. J. Biol. Chem. 285, 40303–40311 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Chamberlain, S. J. et al. Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes. Proc. Natl Acad. Sci. USA 107, 17668–17673 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Wu and G. Mostoslavsky for their insightful comments and critical reading of the manuscript and J. Gold for detailed discussion regarding the human ESC-derived oligodendrocyte clinical trial at Geron. This work was supported by grants from the NIH (OD003266 and HD058013 to K.H.; OD004411, HL081086, HL100408 to S.M.W.), the Harvard Stem Cell Institute (K.H. and S.M.W.), and the Howard Hughes Medical Institute (to K.H.). We apologize to colleagues whose work we could not cite in this brief review article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sean M. Wu or Konrad Hochedlinger.

Ethics declarations

Competing interests

K.H. is an advisor to iPierian, Inc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, S., Hochedlinger, K. Harnessing the potential of induced pluripotent stem cells for regenerative medicine. Nat Cell Biol 13, 497–505 (2011). https://doi.org/10.1038/ncb0511-497

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0511-497

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research