Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

Centriole biogenesis: a tale of two pathways

Two recent studies in Drosophila demonstrate that overexpression of proteins required for centriole duplication can not only induce centriole over-duplication in cells containing centrioles, but can also drive de novo centriole assembly in unfertilized eggs that initially lack centrioles. These studies offer a new perspective on the mechanisms that control centriole duplication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effects of Sak/Plk4 overexpression in different cell types.
Figure 2: Mechanisms of centriole reduplication when Sak/Plk4 or Sas6 are overexpressed.

References

  1. Nigg, E. A. International Journal of Cancer 119, 2717–2723 (2006).

    Google Scholar 

  2. Rodrigues-Martins, A., Riparbelli, M., Callaini, G., Glover, D. M. & Bettencourt-Dias, M. Science 316, 1046–1050 (2007).

    Article  CAS  Google Scholar 

  3. Peel, N., Stevens, N. R., Basto, R. & Raff, J. W. Curr. Biol. 17, 834–843 (2007).

    Article  CAS  Google Scholar 

  4. Bettencourt-Dias, M. et al. Curr. Biol. 15, 2199–2207 (2005).

    Article  CAS  Google Scholar 

  5. Habedank, R., Stierhof, Y. D., Wilkinson, C. J. & Nigg, E. A. Nature Cell Biol. 7, 1140–1146 (2005).

    Article  Google Scholar 

  6. Delattre, M., Canard, C. & Gonczy, P. Curr. Biol. 16, 1844–1849 (2006).

    Article  CAS  Google Scholar 

  7. Pelletier, L., O'Toole, E., Schwager, A., Hyman, A. A. & Muller-Reichert,T. Nature 444, 619–623 (2006).

    Article  CAS  Google Scholar 

  8. Tsou, M. F. & Stearns, T. Nature 442, 947–951 (2006).

    Article  CAS  Google Scholar 

  9. Szollosi, D., Calarco, P. & Donahue, R. P. J. Cell Sci. 11, 521–541 (1972).

    CAS  PubMed  Google Scholar 

  10. Uetake, Y. et al. J. Cell Biol. 176, 173–182 (2007).

    Article  CAS  Google Scholar 

  11. La Terra, S. et al. J. Cell Biol. 168, 713–720 (2005).

    Article  CAS  Google Scholar 

  12. Duensing, A. et al. Oncogene doi:10.1038/sj.onc.1210456 (2007).

  13. Nigg, E. A. Trends Cell Biol. 17, 215–221 (2007).

    Article  CAS  Google Scholar 

  14. Dammermann, A. et al. Dev. Cell 7, 815–829 (2004).

    Article  CAS  Google Scholar 

  15. Young, A., Dictenberg, J. B., Purohit, A., Tuft, R. & Doxsey, S. J. Mol. Biol. Cell 11, 2047–2056 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loncarek, J., Sluder, G. & Khodjakov, A. Centriole biogenesis: a tale of two pathways. Nat Cell Biol 9, 736–738 (2007). https://doi.org/10.1038/ncb0707-736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0707-736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing