Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds

Abstract

Intermediate filaments are cytoskeletal polymers encoded by a large family of differentially expressed genes that provide crucial structural support in the cytoplasm and nucleus of higher eukaryotes. Perturbation of their function accounts for several genetically determined diseases in which fragile cells cannot sustain mechanical and non-mechanical stresses. Recent studies shed light on how this structural support is modulated to meet the changing needs of cells, and reveal a novel role whereby intermediate filaments influence cell growth and death through dynamic interactions with non-structural proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Major cellular functions of cytoplasmic intermediate filaments.

Similar content being viewed by others

References

  1. Lazarides, E. Intermediate filaments as mechanical integrators of cellular space. Nature 283, 249–256 (1980).

    CAS  PubMed  Google Scholar 

  2. Alberts, B. et al. Molecular Biology of the Cell, 4th Edition. 907–982 (Garland Science, New York, 2002).

    Google Scholar 

  3. Coulombe, P.A., Ma, L., Yamada, S. & Wawersik, M. Intermediate filaments at a glance. J. Cell Sci. 114, 4345–4347 (2001).

    CAS  PubMed  Google Scholar 

  4. Hesse, M., Magin, T.M. & Weber, K. Genes for intermediate filament proteins and the draft sequence of the human genome: novel keratin genes and a surprisingly high number of pseudogenes related to keratin genes 8 and 18. J. Cell Sci. 114, 2569–2575 (2001).

    CAS  PubMed  Google Scholar 

  5. Erber, A. et al. Characterization of the Hydra lamin and its gene: A molecular phylogeny of metazoan lamins. J. Mol. Evol. 49, 260–271 (1999).

    CAS  PubMed  Google Scholar 

  6. Hutchison, C.J. Lamins: building blocks or regulators of gene expression? Nature Rev. Mol. Cell Biol. 3, 848–858 (2002).

    CAS  Google Scholar 

  7. Gruenbaum, Y. et al. The nuclear lamina and its functions in the nucleus. Int. Rev. Cytol. 226, 1–62 (2003).

    CAS  PubMed  Google Scholar 

  8. Fuchs, E. & Weber, K. Intermediate filaments: structure, dynamics, function, and disease. Annu. Rev. Biochem. 63, 345–382 (1994).

    CAS  PubMed  Google Scholar 

  9. Fuchs, E. & Cleveland, D.W. A structural scaffolding of intermediate filaments in health and disease. Science 279, 514–519 (1998).

    CAS  PubMed  Google Scholar 

  10. Strelkov, S.V., Herrmann, H. & Aebi, U. Molecular architecture of intermediate filaments. Bioessays 25, 243–251 (2003).

    CAS  PubMed  Google Scholar 

  11. Herrmann, H., Hesse, M., Reichenzeller, M., Aebi, U. & Magin, T.M. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. Int. Rev. Cytol. 223, 83–175 (2003).

    CAS  PubMed  Google Scholar 

  12. Er Rafik, M., Doucet, J. & Briki, F. The intermediate filament architecture as determined by X-Ray diffraction modeling of hard alpha-keratin. Biophys. J. 86, 3893–3904 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Windoffer, R., Woll, S., Strnad, P. & Leube, R.E. Identification of novel principles of keratin filament network turnover in living cells. Mol. Biol. Cell 15, 2436–2448 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Vassar, R., Coulombe, P.A., Degenstein, L., Albers, K. & Fuchs, E. Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 64, 365–380 (1991).

    CAS  PubMed  Google Scholar 

  15. Fuchs, E., Esteves, R.A. & Coulombe, P.A. Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. Proc. Natl Acad. Sci. USA 89, 6906–6910 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Omary, M.B., Coulombe, P.A. & McLean, W.H.I. Intermediate filaments and their associate diseases. N. Engl. J. Med. (In the press).

  17. Novelli, G. & D'Apice, M.R. The strange case of the “lumper” lamin A/C gene and human premature ageing. Trends Mol. Med. 9, 370–375 (2003).

    CAS  PubMed  Google Scholar 

  18. Worman, H.J. & Courvalin, J.C. How do mutations in lamins A and C cause disease? J. Clin. Invest. 113, 349–351 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zastrow, M.S., Vlcek, S. & Wilson, K.L. Proteins that bind A-type lamins: integrating isolated clues. J. Cell Sci. 117, 979–987 (2004).

    CAS  PubMed  Google Scholar 

  20. Coulombe, P.A., Bousquet, O., Ma, L., Yamada, S. & Wirtz, D. The 'ins' and 'outs' of intermediate filament organization. Trends Cell Biol. 10, 420–428 (2000).

    CAS  PubMed  Google Scholar 

  21. Green, K.J. & Gaudry, C.A. Are desmosomes more than tethers for intermediate filaments? Nature Rev. Mol. Cell Biol. 1, 208–216 (2000).

    CAS  Google Scholar 

  22. Fuchs, E. & Karakesisoglou, I. Bridging cytoskeletal intersections. Genes Dev. 15, 1–14 (2001).

    CAS  PubMed  Google Scholar 

  23. Leung, C.L., Green, K.J. & Liem, R.K. Plakins: a family of versatile cytolinker proteins. Trends Cell Biol. 12, 37–45 (2002).

    CAS  PubMed  Google Scholar 

  24. Roper, K., Gregory, S.L. & Brown, N.H. The 'spectraplakins': cytoskeletal giants with characteristics of both spectrin and plakin families. J. Cell Sci. 115, 4215–4225 (2002).

    CAS  PubMed  Google Scholar 

  25. Coulombe, P.A. & Omary, M.B. 'Hard' and 'soft' principles defining the structure, function and regulation of keratin intermediate filaments. Curr. Opin. Cell Biol. 14, 110–122 (2002).

    CAS  PubMed  Google Scholar 

  26. Mounkes, L., Kozlov, S., Burke, B. & Stewart, C.L. The laminopathies: nuclear structure meets disease. Curr. Opin. Genet. Dev. 13, 223–230 (2003).

    CAS  PubMed  Google Scholar 

  27. Erber, A., Riemer, D., Bovenschulte, M. & Weber, K. Molecular phylogeny of metazoan intermediate filament proteins. J. Mol. Evol. 47, 751–762 (1998).

    CAS  PubMed  Google Scholar 

  28. Karabinos, A., Schmidt, H., Harborth, J., Schnabel, R. & Weber, K. Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development. Proc. Natl Acad. Sci. USA 98, 7863–7868 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Ausmees, N., Kuhn, J.R. & Jacobs-Wagner, C. The bacterial cytoskeleton: an intermediate filament-like function in cell shape. Cell 115, 705–713 (2003).

    CAS  PubMed  Google Scholar 

  30. van den Ent, F., Amos, L.A. & Lowe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413, 39–44 (2001).

    CAS  PubMed  Google Scholar 

  31. Lowe, J. & Amos, L.A. Crystal structure of the bacterial cell-division protein FtsZ. Nature 391, 203–206 (1998).

    CAS  PubMed  Google Scholar 

  32. Lariviere, R.C. & Julien, J.P. Functions of intermediate filaments in neuronal development and disease. J. Neurobiol. 58, 131–148 (2004).

    CAS  PubMed  Google Scholar 

  33. McConnell, S.J. & Yaffe, M.P. Intermediate filament formation by a yeast protein essential for organelle inheritance. Science 260, 687–689 (1993).

    CAS  PubMed  Google Scholar 

  34. Omary, M.B., Ku, N.O. & Toivola, D.M. Keratins: guardians of the liver. Hepatology 35, 251–257 (2002).

    CAS  PubMed  Google Scholar 

  35. Oshima, R.G. Apoptosis and keratin intermediate filaments. Cell Death Differ. 9, 486–492 (2002).

    CAS  PubMed  Google Scholar 

  36. Paramio, J.M. & Jorcano, J.L. Beyond structure: do intermediate filaments modulate cell signalling? Bioessays 24, 836–844 (2002).

    CAS  PubMed  Google Scholar 

  37. Owens, D.W. & Lane, E.B. The quest for the function of simple epithelial keratins. Bioessays 25, 748–758 (2003).

    CAS  PubMed  Google Scholar 

  38. Baribault, H., Price, J., Miyai, K. & Oshima, R.G. Mid-gestational lethality in mice lacking keratin 8. Genes Dev. 7, 1191–1202 (1993).

    CAS  PubMed  Google Scholar 

  39. Ku, N.O., Michie, S., Oshima, R.G. & Omary, M.B. Chronic hepatitis, hepatocyte fragility, and increased soluble phosphoglycokeratins in transgenic mice expressing a keratin 18 conserved arginine mutant. J. Cell Biol. 131, 1303–1314 (1995).

    CAS  PubMed  Google Scholar 

  40. Loranger, A. et al. Simple epithelium keratins are required for maintenance of hepatocyte integrity. Am. J. Pathol. 151, 1673–1683 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Magin, T.M. et al. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J. Cell Biol. 140, 1441–1451 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Ku, N.O. et al. Susceptibility to hepatotoxicity in transgenic mice that express a dominant-negative human keratin 18 mutant. J. Clin. Invest. 98, 1034–1046 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Toivola, D.M. et al. Protein phosphatase inhibition in normal and keratin 8/18 assembly-incompetent mouse strains supports a functional role of keratin intermediate filaments in preserving hepatocyte integrity. Hepatology 28, 116–128 (1998).

    CAS  PubMed  Google Scholar 

  44. Zatloukal, K. et al. Cytokeratin 8 protects from hepatotoxicity, and its ratio to cytokeratin 18 determines the ability of hepatocytes to form Mallory bodies. Am. J. Pathol. 156, 1263–1274 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ku, N.O. et al. Mutation of a major keratin phosphorylation site predisposes to hepatotoxic injury in transgenic mice. J. Cell Biol. 143, 2023–2032 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Liao, J., Lowthert, L.A., Ghori, N. & Omary, M.B. The 70-kDa heat shock proteins associate with glandular intermediate filaments in an ATP-dependent manner. J. Biol. Chem. 270, 915–922 (1995).

    CAS  PubMed  Google Scholar 

  47. Izawa, I. et al. Identification of Mrj, a DnaJ/Hsp40 family protein, as a keratin 8/18 filament regulatory protein. J. Biol. Chem. 275, 34521–34527 (2000).

    CAS  PubMed  Google Scholar 

  48. Perng, M.D. et al. Intermediate filament interactions can be altered by HSP27 and αB-crystallin. J. Cell Sci. 112, 2099–2112 (1999).

    CAS  PubMed  Google Scholar 

  49. Omary, M.B. et al. PKCε-related kinase associates with and phosphorylates cytokeratin 8 and 18. J. Cell Biol. 117, 583–593 (1992).

    CAS  PubMed  Google Scholar 

  50. He, T., Stepulak, A., Holmstrom, T.H., Omary, M.B. & Eriksson, J.E. The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277, 10767–10774 (2002).

    CAS  PubMed  Google Scholar 

  51. Ku, N.O., Gish, R., Wright, T.L. & Omary, M.B. Keratin 8 mutations in patients with cryptogenic liver disease. N. Engl. J. Med. 344, 1580–1587 (2001).

    CAS  PubMed  Google Scholar 

  52. Ku, N.O. et al. Keratin 8 and 18 mutations are risk factors for developing liver disease of multiple etiologies. Proc. Natl Acad. Sci. USA 100, 6063–6068 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Owens, D.W. et al. Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J. Cell Sci. 117, 1989–1999 (2004).

    CAS  PubMed  Google Scholar 

  54. Caulin, C., Ware, C.F., Magin, T.M. & Oshima, R.G. Keratin-dependent, epithelial resistance to tumor necrosis factor-induced apoptosis. J. Cell Biol. 149, 17–22 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gilbert, S., Loranger, A., Daigle, N. & Marceau, N. Simple epithelium keratins 8 and 18 provide resistance to Fas-mediated apoptosis. The protection occurs through a receptor-targeting modulation. J. Cell Biol. 154, 763–773 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Inada, H. et al. Keratin attenuates tumor necrosis factor-induced cytotoxicity through association with TRADD. J. Cell Biol. 155, 415–426 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ku, N.O., Soetikno, R.M. & Omary, M.B. Keratin mutation in transgenic mice predisposes to Fas but not TNF-induced apoptosis and massive liver injury. Hepatology 37, 1006–1014 (2003).

    CAS  PubMed  Google Scholar 

  58. Jaquemar, D. et al. Keratin 8 protection of placental barrier function. J. Cell Biol. 161, 749–756 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. McGowan, K.M. et al. Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev. 16, 1412–1422 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Hardy, M.H. The secret life of the hair follicle. Trends Genet. 8, 55–61 (1992).

    CAS  PubMed  Google Scholar 

  61. Robertson, J. et al. Apoptotic death of neurons exhibiting peripherin aggregates is mediated by the proinflammatory cytokine tumor necrosis factor-α. J. Cell Biol. 155, 217–226 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hesse, M., Franz, T., Tamai, Y., Taketo, M.M. & Magin, T.M. Targeted deletion of keratins 18 and 19 leads to trophoblast fragility and early embryonic lethality. EMBO J. 19, 5060–5070 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Ameen, N.A., Figueroa, Y. & Salas, P.J. Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. J. Cell Sci. 114, 563–575 (2001).

    CAS  PubMed  Google Scholar 

  64. Toivola, D.M., Krishnan, S., Binder, H.J., Singh, S.K. & Omary, M.B. Keratins modulate colonocyte electrolyte transport via protein mistargeting. J. Cell Biol. 164, 911–921 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Micheau, O. & Tschopp, J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181–190 (2003).

    CAS  PubMed  Google Scholar 

  66. Yoneda, K. et al. An autocrine/paracrine loop linking keratin 14 aggregates to tumor necrosis factor α-mediated cytotoxicity in a keratinocyte model of epidermolysis bullosa simplex. J. Biol. Chem. 279, 7296–7303 (2004).

    CAS  PubMed  Google Scholar 

  67. Sahlgren, C.M. et al. Cdk5 regulates the organization of Nestin and its association with p35. Mol. Cell. Biol. 23, 5090–5106 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Lee, J.C. et al. DEDD regulates degradation of intermediate filaments during apoptosis. J. Cell Biol. 158, 1051–1066 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Dinsdale, D., Lee, J.C., Dewson, G., Cohen, G.M. & Peter, M.E. Intermediate filaments control the intracellular distribution of caspases during apoptosis. Am. J. Pathol. 164, 395–407 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Rao, L., Perez, D. & White, E. Lamin proteolysis facilitates nuclear events during apoptosis. J. Cell Biol. 135, 1441–1455 (1996).

    CAS  PubMed  Google Scholar 

  71. Broers, J.L. et al. Partial cleavage of A-type lamins concurs with their total disintegration from the nuclear lamina during apoptosis. Eur. J. Cell Biol. 81, 677–691 (2002).

    CAS  PubMed  Google Scholar 

  72. Ruchaud, S. et al. Caspase-6 gene disruption reveals a requirement for lamin A cleavage in apoptotic chromatin condensation. EMBO J. 21, 1967–1977 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Byun, Y. et al. Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis. Cell Death Differ. 8, 443–450 (2001).

    CAS  PubMed  Google Scholar 

  74. Chen, F., Chang, R., Trivedi, M., Capetanaki, Y. & Cryns, V.L. Caspase proteolysis of desmin produces a dominant-negative inhibitor of intermediate filaments and promotes apoptosis. J. Biol. Chem. 278, 6848–6853 (2003).

    CAS  PubMed  Google Scholar 

  75. Caulin, C., Salvesen, G.S. & Oshima, R.G. Caspase cleavage of keratin 18 and reorganization of intermediate filaments during epithelial cell apoptosis. J. Cell Biol. 138, 1379–1394 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Ku, N.O., Liao, J. & Omary, M.B. Apoptosis generates stable fragments of human type I keratins. J. Biol. Chem. 272, 33197–33203 (1997).

    CAS  PubMed  Google Scholar 

  77. Ueno, T. et al. Measurement of an apoptotic product in the sera of breast cancer patients. Eur. J. Cancer 39, 769–774 (2003).

    CAS  PubMed  Google Scholar 

  78. Eriksson, J.E., Opal, P. & Goldman, R.D. Intermediate filament dynamics. Curr. Opin. Cell. Biol. 4, 99–104 (1992).

    CAS  PubMed  Google Scholar 

  79. Inagaki, M. et al. Dynamic properties of intermediate filaments: Regulation by phosphorylation. Bioessays 18, 481–487 (1996).

    CAS  Google Scholar 

  80. Foisner, R. Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. Bioessays 19, 297–305 (1997).

    CAS  PubMed  Google Scholar 

  81. Paramio, J.M., Segrelles, C., Ruiz, S. & Jorcano, J.L. Inhibition of protein kinase B (PKB) and PKCζ mediates keratin K10-induced cell cycle arrest. Mol. Cell. Biol. 21, 7449–7459 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Paramio, J.M. et al. Modulation of cell proliferation by cytokeratins K10 and K16. Mol. Cell. Biol. 19, 3086–3094 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Santos, M., Paramio, J.M., Bravo, A., Ramirez, A. & Jorcano, J.L. The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J. Biol. Chem. 277, 19122–19130 (2002).

    CAS  PubMed  Google Scholar 

  84. Santos, M. et al. Impaired NF-κB activation and increased production of tumor necrosis factor α in transgenic mice expressing keratin K10 in the basal layer of the epidermis. J. Biol. Chem. 278, 13422–13430 (2003).

    CAS  PubMed  Google Scholar 

  85. Reichelt, J. & Magin, T.M. Hyperproliferation, induction of c-Myc and 14-3-3σ, but no cell fragility in keratin-10-null mice. J. Cell Sci. 115, 2639–2650 (2002).

    CAS  PubMed  Google Scholar 

  86. Reichelt, J., Bussow, H., Grund, C. & Magin, T.M. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol. Biol. Cell 12, 1557–1568 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Schweizer, J., Kinjo, M., Furstenberger, G. & Winter, H. Sequential expression of mRNA-encoded keratin sets in neonatal mouse epidermis: basal cells with properties of terminally differentiating cells. Cell 37, 159–170 (1984).

    CAS  PubMed  Google Scholar 

  88. Toivola, D.M. et al. Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology 34, 1174–1183 (2001).

    CAS  PubMed  Google Scholar 

  89. Ku, N.O., Liao, J. & Omary, M.B. Phosphorylation of human keratin 18 serine 33 regulates binding to 14-3-3 proteins. EMBO J. 17, 1892–1906 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hermeking, H. The 14-3-3 cancer connection. Nature Rev. Cancer 3, 931–943 (2003).

    CAS  Google Scholar 

  91. Ku, N.O., Michie, S., Resurreccion, E.Z., Broome, R.L. & Omary, M.B. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. Proc. Natl Acad. Sci. USA 99, 4373–4378 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Tzivion, G., Luo, Z.J. & Avruch, J. Calyculin A-induced vimentin phosphorylation sequesters 14-3-3 and displaces other 14-3-3 partners in vivo. J. Biol. Chem. 275, 29772–26778 (2000).

    CAS  PubMed  Google Scholar 

  93. Martin, P. Wound healing — aiming for perfect skin regeneration. Science 276, 75–81 (1997).

    CAS  PubMed  Google Scholar 

  94. Wong, P. & Coulombe, P.A. Loss of keratin 6 (K6) proteins reveals a function for intermediate filaments during wound repair. J. Cell Biol. 163, 327–337 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Pekny, M. et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J. Cell Biol. 145, 503–514 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Odland, G. & Ross, R. Human wound repair. I. Epidermal regeneration. J. Cell Biol. 39, 135–151 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Paladini, R.D., Takahashi, K., Bravo, N.S. & Coulombe, P.A. Onset of re-epithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: defining a potential role for keratin 16. J. Cell Biol. 132, 381–397 (1996).

    CAS  PubMed  Google Scholar 

  98. Mansbridge, J.N. & Knapp, A.M. Changes in keratinocyte maturation during wound healing. J. Invest. Dermatol. 89, 253–263 (1987).

    CAS  PubMed  Google Scholar 

  99. Wong, P. et al. Introducing a null mutation in the mouse K6α and K6β genes reveals their essential structural role in the oral mucosa. J. Cell Biol. 150, 921–928 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wojcik, S.M., Longley, M.A. & Roop, D.R. Discovery of a novel murine keratin 6 (K6) isoform explains the absence of hair and nail defects in mice deficient for K6a and K6b. J. Cell Biol. 154, 619–630 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Cozzolino, M. et al. p120 Catenin is required for growth factor-dependent cell motility and scattering in epithelial cells. Mol. Biol. Cell 14, 1964–1977 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Mazzalupo, S., Wong, P., Martin, P. & Coulombe, P.A. Role for keratins 6 and 17 during wound closure in embryonic mouse skin. Dev. Dyn. 226, 356–365 (2003).

    CAS  PubMed  Google Scholar 

  103. Beil, M. et al. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nature Cell Biol. 5, 803–811 (2003).

    CAS  PubMed  Google Scholar 

  104. Morley, S.M. et al. Generation and characterization of epidermolysis bullosa simplex cell lines: scratch assays show faster migration with disruptive keratin mutations. Br. J. Dermatol. 149, 46–58 (2003).

    CAS  PubMed  Google Scholar 

  105. Janmey, P.A., Euteneuer, U., Traub, P. & Schliwa, M. Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J. Cell Biol. 113, 155–160 (1991).

    CAS  PubMed  Google Scholar 

  106. Yamada, S., Wirtz, D. & Coulombe, P.A. Pairwise assembly determines the intrinsic potential for self-organization and mechanical properties of keratin filaments. Mol. Biol. Cell 13, 382–391 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Ma, L., Yamada, S., Wirtz, D. & Coulombe, P.A. A 'hot-spot' mutation alters the mechanical properties of keratin filament networks. Nature Cell Biol. 3, 503–506 (2001).

    CAS  PubMed  Google Scholar 

  108. Brown, M.J., Hallam, J.A., Colucci-Guyon, E. & Shaw, S. Rigidity of circulating lymphocytes is primarily conferred by vimentin intermediate filaments. J. Immunol. 166, 6640–6646 (2001).

    CAS  PubMed  Google Scholar 

  109. Brown, M.J., Hallam, J.A., Liu, Y., Yamada, K.M. & Shaw, S. Cutting edge: integration of human T lymphocyte cytoskeleton by the cytolinker plectin. J. Immunol. 167, 641–645 (2001).

    CAS  PubMed  Google Scholar 

  110. Wiche, G. Role of plectin in cytoskeleton organization and dynamics. J. Cell Sci. 111, 2477–2486 (1998).

    CAS  PubMed  Google Scholar 

  111. Runembert, I. et al. Vimentin affects localization and activity of sodium-glucose cotransporter SGLT1 in membrane rafts. J. Cell Sci. 115, 713–724 (2002).

    CAS  PubMed  Google Scholar 

  112. Mor-Vaknin, N., Punturieri, A., Sitwala, K. & Markovitz, D.M. Vimentin is secreted by activated macrophages. Nature Cell Biol. 5, 59–63 (2003).

    CAS  PubMed  Google Scholar 

  113. Milner, D.J., Mavroidis, M., Weisleder, N. & Capetanaki, Y. Desmin cytoskeleton linked to muscle mitochondrial distribution and respiratory function. J. Cell Biol. 150, 1283–1298 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Linden, M., Li, Z., Paulin, D., Gotow, T. & Leterrier, J.F. Effects of desmin gene knockout on mice heart mitochondria. J. Bioenerg. Biomembr. 33, 333–341 (2001).

    CAS  PubMed  Google Scholar 

  115. Weisleder, N., Taffet, G.E. & Capetanaki, Y. Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. Proc. Natl Acad. Sci. USA 101, 769–774 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Rao, M.V. et al. Myosin Va binding to neurofilaments is essential for correct myosin Va distribution and transport and neurofilament density. J. Cell Biol. 159, 279–290 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank C. Parent, B. Omary, and C. Jacobs-Wagner for their comments and members of the laboratory for their support. This effort was supported by grants AR42047 and AR44232 from the National Institutes of Health to P.A.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Wong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coulombe, P., Wong, P. Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol 6, 699–706 (2004). https://doi.org/10.1038/ncb0804-699

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0804-699

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing