Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Protein quality control: chaperones culling corrupt conformations

Abstract

Achieving the correct balance between folding and degradation of misfolded proteins is critical for cell viability. The importance of defining the mechanisms and factors that mediate cytoplasmic quality control is underscored by the growing list of diseases associated with protein misfolding and aggregation. Molecular chaperones assist protein folding and also facilitate degradation of misfolded polypeptides by the ubiquitin–proteasome system. Here we discuss emerging links between folding and degradation machineries and highlight challenges for future research.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of molecular chaperones in the balance of folding, degradation and aggregation.
Figure 2: Domain organization of selected proteins linking chaperones and the UPS.

Similar content being viewed by others

References

  1. Frydman, J. Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70, 603–647 (2001).

    Article  CAS  Google Scholar 

  2. Hartl, F. U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  CAS  Google Scholar 

  3. Dobson, C. M. Principles of protein folding, misfolding and aggregation. Semin. Cell Dev. Biol. 15, 3–16 (2004).

    Article  CAS  Google Scholar 

  4. Wolf, D. H. & Hilt, W. The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim. Biophys. Acta 1695, 19–31 (2004).

    Article  CAS  Google Scholar 

  5. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  6. Hoppe, T. Multiubiquitylation by E4 enzymes: 'one size' doesn't fit all. Trends Biochem. Sci. 30, 183–187 (2005).

    Article  CAS  Google Scholar 

  7. Cyr, D. M., Hohfeld, J. & Patterson, C. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27, 368–375 (2002).

    Article  CAS  Google Scholar 

  8. Scott, M. D. & Frydman, J. Aberrant protein folding as the molecular basis of cancer. Methods Mol. Biol. 232, 67–76 (2003).

    CAS  PubMed  Google Scholar 

  9. Amaral, M. D. Processing of CFTR: Traversing the cellular maze - How much CFTR needs to go through to avoid cystic fibrosis? Pediatr. Pulmonol. 39, 479–491 (2005).

    Article  Google Scholar 

  10. Muchowski, P. J. & Wacker, J. L. Modulation of neurodegeneration by molecular chaperones. Nature Rev. Neurosci. 6, 11–22 (2005).

    Article  CAS  Google Scholar 

  11. Glabe, C. G. Conformation-dependent antibodies target diseases of protein misfolding. Trends Biochem. Sci. 29, 542–547 (2004).

    Article  CAS  Google Scholar 

  12. Bucciantini, M. et al. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 416, 507–511 (2002).

    Article  CAS  Google Scholar 

  13. Arrasate, M., Mitra, S., Schweitzer, E. S., Segal, M. R. & Finkbeiner, S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431, 805–810 (2004).

    Article  CAS  Google Scholar 

  14. Schaffar, G. et al. Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Mol. Cell 15, 95–105 (2004).

    Article  CAS  Google Scholar 

  15. Wacker, J. L., Zareie, M. H., Fong, H., Sarikaya, M. & Muchowski, P. J. Hsp70 and Hsp40 attenuate formation of spherical and annular polyglutamine oligomers by partitioning monomer. Nature Struct. Mol. Biol. 11, 1215–1222 (2004).

    Article  CAS  Google Scholar 

  16. Bercovich, B. et al. Ubiquitin-dependent degradation of certain protein substrates in vitro requires the molecular chaperone Hsc70. J. Biol. Chem. 272, 9002–9010 (1997).

    Article  CAS  Google Scholar 

  17. Lee, D. H., Sherman, M. Y. & Goldberg, A. L. Involvement of the molecular chaperone Ydj1 in the ubiquitin-dependent degradation of short-lived and abnormal proteins in Saccharomyces cerevisiae. Mol. Cell. Biol. 16, 4773–4781 (1996).

    Article  CAS  Google Scholar 

  18. Meacham, G. C., Patterson, C., Zhang, W., Younger, J. M. & Cyr, D. M. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nature Cell Biol. 3, 100–105 (2001).

    Article  CAS  Google Scholar 

  19. Youker, R. T., Walsh, P., Beilharz, T., Lithgow, T. & Brodsky, J. L. Distinct roles for the Hsp40 and Hsp90 molecular chaperones during cystic fibrosis transmembrane conductance regulator degradation in yeast. Mol. Biol. Cell 15, 4787–4797 (2004).

    Article  CAS  Google Scholar 

  20. McClellan, A. J., Scott, M. D. & Frydman, J. Folding and quality control of the VHL tumor suppressor proceed through distinct chaperone pathways. Cell 121, 739–748 (2005).

    Article  CAS  Google Scholar 

  21. Verma, R. et al. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol. Biol. Cell 11, 3425–3439 (2000).

    Article  CAS  Google Scholar 

  22. Esser, C., Alberti, S. & Hohfeld, J. Cooperation of molecular chaperones with the ubiquitin/proteasome system. Biochim. Biophys. Acta 1695, 171–188 (2004).

    Article  CAS  Google Scholar 

  23. Westhoff, B., Chapple, J. P., Spuy, J. v. d., Höhfeld, J. & Cheetham, M. E. HSJ1 is a neuronal shuttling factor for the sorting of chaperone clients to the proteasome. Curr. Biol. 15, 1058–1064 (2005).

    Article  CAS  Google Scholar 

  24. McClellan, A. J. & Frydman, J. Molecular chaperones and the art of recognizing a lost cause. Nature Cell Biol. 3, E51–E53 (2001).

    Article  CAS  Google Scholar 

  25. Xu, W. et al. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl Acad. Sci. USA 99, 12847–12852 (2002).

    Article  CAS  Google Scholar 

  26. Younger, J. M. et al. A foldable CFTRΔF508 biogenic intermediate accumulates upon inhibition of the Hsc70-CHIP E3 ubiquitin ligase. J. Cell Biol. 167, 1075–1085 (2004).

    Article  CAS  Google Scholar 

  27. Murata, S., Minami, Y., Minami, M., Chiba, T. & Tanaka, K. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2, 1133–1138 (2001).

    Article  CAS  Google Scholar 

  28. Jana, N. R. et al. Co-chaperone CHIP associates with expanded polyglutamine protein and promotes their degradation by proteasomes. J. Biol. Chem. 280, 11635–11640 (2005).

    Article  CAS  Google Scholar 

  29. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).

    Article  CAS  Google Scholar 

  30. Tanaka, K., Suzuki, T., Hattori, N. & Mizuno, Y. Ubiquitin, proteasome and parkin. Biochim. Biophys. Acta 1695, 235–247 (2004).

    Article  CAS  Google Scholar 

  31. Shimura, H. et al. Ubiquitination of a new form of α-synuclein by parkin from human brain: implications for Parkinson's disease. Science 293, 263–269 (2001).

    Article  CAS  Google Scholar 

  32. Imai, Y. et al. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cell 10, 55–67 (2002).

    Article  CAS  Google Scholar 

  33. Tsai, Y. C., Fishman, P. S., Thakor, N. V. & Oyler, G. A. Parkin facilitates the elimination of expanded polyglutamine proteins and leads to preservation of proteasome function. J. Biol. Chem. 278, 22044–22055 (2003).

    Article  CAS  Google Scholar 

  34. Kalia, S. K. et al. BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44, 931–945 (2004).

    Article  CAS  Google Scholar 

  35. Dai, Q. et al. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J. 22, 5446–5458 (2003).

    Article  CAS  Google Scholar 

  36. Gasch, A. P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  37. Niwa, J. et al. Dorfin ubiquitylates mutant SOD1 and prevents mutant SOD1-mediated neurotoxicity. J. Biol. Chem. 277, 36793–36798 (2002).

    Article  CAS  Google Scholar 

  38. Ito, T. et al. Dorfin localizes to Lewy bodies and ubiquitylates synphilin-1. J. Biol. Chem. 278, 29106–29114 (2003).

    Article  CAS  Google Scholar 

  39. Dasgupta, A., Ramsey, K. L., Smith, J. S. & Auble, D. T. Sir Antagonist 1 (San1) is a ubiquitin ligase. J. Biol. Chem. 279, 26830–26838 (2004).

    Article  CAS  Google Scholar 

  40. Gardner, R. G., Nelson, Z. W. & Gottschling, D. E. Degradation-mediated protein quality control in the nucleus. Cell 120, 803–815 (2005).

    Article  CAS  Google Scholar 

  41. Feldman, D. E., Thulasiraman, V., Ferreyra, R. G. & Frydman, J. Formation of the VHL-elongin BC tumor suppressor complex is mediated by the chaperonin TRiC. Mol. Cell 4, 1051–1061 (1999).

    Article  CAS  Google Scholar 

  42. Melville, M. W., McClellan, A. J., Meyer, A. S., Darveau, A. & Frydman, J. The Hsp70 and TRiC/CCT chaperone systems cooperate in vivo to assemble the von Hippel-Lindau tumor suppressor complex. Mol. Cell. Biol. 23, 3141–3151 (2003).

    Article  CAS  Google Scholar 

  43. Morley, J. F., Brignull, H. R., Weyers, J. J. & Morimoto, R. I. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 99, 10417–10422 (2002).

    Article  Google Scholar 

  44. Hatakeyama, S., Matsumoto, M., Yada, M. & Nakayama, K. I. Interaction of U-box-type ubiquitin-protein ligases (E3s) with molecular chaperones. Genes Cells 9, 533–548 (2004).

    Article  CAS  Google Scholar 

  45. Lee, Y. T. et al. Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J. Biol. Chem. 279, 16511–16517 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. Christianson, V. Albanese and R. Geller for their helpful comments and suggestions. We apologize to authors whose primary references we were unable to cite due to space limitations.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClellan, A., Tam, S., Kaganovich, D. et al. Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7, 736–741 (2005). https://doi.org/10.1038/ncb0805-736

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0805-736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing