Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly

Abstract

Cellular polarization involves the generation of asymmetry along an intracellular axis. In a multicellular tissue, the asymmetry of individual cells must conform to the overlying architecture of the tissue. However, the mechanisms that couple cellular polarization to tissue morphogenesis are poorly understood. Here, we report that orientation of apical polarity in developing Madin–Darby canine kidney (MDCK) epithelial cysts requires the small GTPase Rac1 and the basement membrane component laminin. Dominant-negative Rac1 alters the supramolecular assembly of endogenous MDCK laminin and causes a striking inversion of apical polarity. Exogenous laminin is recruited to the surface of these cysts and rescues apical polarity. These findings implicate Rac1-mediated laminin assembly in apical pole orientation. By linking apical orientation to generation of the basement membrane, epithelial cells ensure the coordination of polarity with tissue architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: N17Rac1 inverts apical polarity during cyst development.
Figure 2: Basolateral markers localize to all cell surfaces in N17Rac1 cysts.
Figure 3: N17Rac1 does not alter the polarity of monolayers.
Figure 4: N17Rac1 does not reduce laminin levels or inhibit laminin secretion.
Figure 5: Abnormal organization of laminin on the surface of N17Rac1 cysts.
Figure 6: Exogenous laminin restores proper apical orientation to N17Rac1 cysts.
Figure 7: Model.

Similar content being viewed by others

References

  1. Drubin, D. G. & Nelson, W. J. Origins of cell polarity. Cell 84, 335–344 (1996).

    Article  CAS  Google Scholar 

  2. Bryant, P. J. & Huwe, A. LAP proteins: what's up with epithelia? Nature Cell Biol. 2, E141–E143 (2000).

    Article  CAS  Google Scholar 

  3. Knust, E. Control of epithelial cell shape and polarity. Curr. Opin. Genet. Dev. 10, 471–475 (2000).

    Article  CAS  Google Scholar 

  4. Vega-Salas, D. E., Salas, P. J., Gundersen, D. & Rodriguez-Boulan, E. Formation of the apical pole of epithelial (Madin–Darby canine kidney) cells: polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell–cell interactions. J. Cell Biol. 104, 905–916 (1987).

    Article  CAS  Google Scholar 

  5. Henry, M. D. & Campbell, K. P. A role for dystroglycan in basement membrane assembly. Cell 95, 859–870 (1998).

    Article  CAS  Google Scholar 

  6. Colognato, H., Winkelmann, D. A. & Yurchenco, P. D. Laminin polymerisation induces a receptor–cytoskeleton network. J. Cell Biol. 145, 619–631 (1999).

    Article  CAS  Google Scholar 

  7. Klinowska, T. C. et al. Laminin and β1 integrins are crucial for normal mammary gland development in the mouse. Dev. Biol. 215, 13–32 (1999).

    Article  CAS  Google Scholar 

  8. Schuger, L., Yurchenco, P., Relan, N. K. & Yang, Y. Laminin fragment E4 inhibition studies: basement membrane assembly and embryonic lung epithelial cell polarisation requires laminin polymerisation. Int. J. Dev. Biol. 42, 217–220 (1998).

    CAS  PubMed  Google Scholar 

  9. Williamson, R. A. et al. Dystroglycan is essential for early embryonic development: disruption of Reichert's membrane in Dag1-null mice. Hum. Mol. Genet. 6, 831–841 (1997).

    Article  CAS  Google Scholar 

  10. Kroschewski, R., Hall, A. & Mellman, I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nature Cell Biol. 1, 8–13 (1999).

    Article  CAS  Google Scholar 

  11. Takaishi, K., Sasaki, T., Kotani, H., Nishioka, H. & Takai, Y. Regulation of cell–cell adhesion by rac and rho small G proteins in MDCK cells. J. Cell Biol. 139, 1047–1059 (1997).

    Article  CAS  Google Scholar 

  12. Jou, T. S. & Nelson, W. J. Effects of regulated expression of mutant RhoA and Rac1 small GTPases on the development of epithelial (MDCK) cell polarity. J. Cell Biol. 142, 85–100 (1998).

    Article  CAS  Google Scholar 

  13. Jou, T. S., Schneeberger, E. E. & Nelson, W. J. Structural and functional regulation of tight junctions by rhoA and rac1 small GTPases. J. Cell Biol. 142, 101–115 (1998).

    Article  CAS  Google Scholar 

  14. McAteer, J. A., Dougherty, G. S., Gardner, K. D. Jr & Evan, A. P. Polarised epithelial cysts in vitro: a review of cell and explant culture systems that exhibit epithelial cyst formation. Scanning Microsc. 2, 1739–1763 (1988).

    CAS  PubMed  Google Scholar 

  15. Hagios, C., Lochter, A. & Bissell, M. J. Tissue architecture: the ultimate regulator of epithelial function? Phil. Trans. R. Soc. Lond. B 353, 857–870 (1998).

    Article  CAS  Google Scholar 

  16. Schwimmer, R. & Ojakian, G. K. The α2β1 integrin regulates collagen-mediated MDCK epithelial membrane remodelling and tubule formation. J. Cell Sci. 108, 2487–2498 (1995).

    CAS  PubMed  Google Scholar 

  17. Zuk, A. & Matlin, K. S. Apical β1 integrin in polarised MDCK cells mediates tubulocyst formation in response to type I collagen overlay. J. Cell Sci. 109, 1875–1889 (1996).

    CAS  PubMed  Google Scholar 

  18. Pollack, A. L., Runyan, R. B. & Mostov, K. E. Morphogenetic mechanisms of epithelial tubulogenesis: MDCK cell polarity is transiently rearranged without loss of cell–cell contact during scatter factor/hepatocyte growth factor-induced tubulogenesis. Dev. Biol. 204, 64–79 (1998).

    Article  CAS  Google Scholar 

  19. Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarised epithelium. I. Uncoupling the roles of cell–cell and cell–substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 137–151 (1990).

    PubMed  Google Scholar 

  20. Ekblom, M., Falk, M., Salmivirta, K., Durbeej, M. & Ekblom, P. Laminin isoforms and epithelial development. Ann. N.Y. Acad. Sci. 857, 194–211 (1998).

    Article  CAS  Google Scholar 

  21. Yang, Y., Palmer, K. C., Relan, N., Diglio, C. & Schuger, L. Role of laminin polymerisation at the epithelial mesenchymal interface in bronchial myogenesis. Development 125, 2621–2629 (1998).

    CAS  PubMed  Google Scholar 

  22. Lallier, T., Artinger, M., Matthew, W. & Bronner-Fraser, M. Distribution and biochemical characterisation of the INO antigen during chick neural crest cell migration. Neurosci. Res. Suppl. 13, S126–S140 (1990).

  23. Henry, M. D. et al. Distinct roles for dystroglycan, β1 integrin and perlecan in cell surface laminin organization. J. Cell Sci. 114, 1137–1144 (2001).

    CAS  PubMed  Google Scholar 

  24. Schoenenberger, C. A., Zuk, A., Zinkl, G. M., Kendall, D. & Matlin, K. S. Integrin expression and localisation in normal MDCK cells and transformed MDCK cells lacking apical polarity. J. Cell Sci. 107, 527–541 (1994).

    CAS  PubMed  Google Scholar 

  25. DiPersio, C. M., Hodivala-Dilke, K. M., Jaenisch, R., Kreidberg, J. A. & Hynes, R. O. α3β1 integrin is required for normal development of the epidermal basement membrane. J. Cell Biol. 137, 729–742 (1997).

    Article  CAS  Google Scholar 

  26. Yap, A. S., Stevenson, B. R., Armstrong, J. W., Keast, J. R. & Manley, S. W. Thyroid epithelial morphogenesis in vitro: a role for bumetanide-sensitive Cl secretion during follicular lumen development. Exp. Cell Res. 213, 319–326 (1994).

    Article  CAS  Google Scholar 

  27. Ervasti, J. M. & Campbell, K. P. A role for the dystrophin–glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 122, 809–823 (1993).

    Article  CAS  Google Scholar 

  28. Yamada, K. M. & Geiger, B. Molecular interactions in cell adhesion complexes. Curr. Opin. Cell Biol. 9, 76–85 (1997).

    Article  CAS  Google Scholar 

  29. Cheng, Y. S., Champliaud, M. F., Burgeson, R. E., Marinkovich, M. P. & Yurchenco, P. D. Self-assembly of laminin isoforms. J. Biol. Chem. 272, 31525–31532 (1997).

    Article  CAS  Google Scholar 

  30. Brown, N. H., Gregory, S. L. & Martin-Bermudo, M. D. Integrins as mediators of morphogenesis in Drosophila. Dev. Biol. 223, 1–16 (2000).

    CAS  Google Scholar 

  31. Bilder, D. & Perrimon, N. Localisation of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403, 676–680 (2000).

    Article  CAS  Google Scholar 

  32. Chant, J. & Herskowitz, I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 65, 1203–1212 (1991).

    Article  CAS  Google Scholar 

  33. Kraut, R., Chia, W., Jan, L. Y., Jan, Y. N. & Knoblich, J. A. Role of inscuteable in orienting asymmetric cell divisions in Drosophila. Nature 383, 50–55 (1996).

    CAS  Google Scholar 

  34. Hall, H. G., Farson, D. A. & Bissell, M. J. Lumen formation by epithelial cell lines in response to collagen overlay: a morphogenetic model in culture. Proc. Natl Acad. Sci. USA 79, 4672–4676 (1982).

    Article  CAS  Google Scholar 

  35. Wang, A. Z., Ojakian, G. K. & Nelson, W. J. Steps in the morphogenesis of a polarised epithelium. II. Disassembly and assembly of plasma membrane domains during reversal of epithelial cell polarity in multicellular epithelial (MDCK) cysts. J. Cell Sci. 95, 153–165 (1990).

    PubMed  Google Scholar 

  36. Lu, B., Roegiers, F., Jan, L. Y. & Jan, Y. N. Adherens junctions inhibit asymmetric division in the Drosophila epithelium. Nature 409, 522–525 (2001).

    Article  CAS  Google Scholar 

  37. Wallenfang, M. R. & Seydoux, G. Polarisation of the anterior–posterior axis of C. elegans is a microtubule-directed process. Nature 408, 89–92 (2000).

    Article  CAS  Google Scholar 

  38. Caplan, M. J. et al. Dependence on pH of polarized sorting of secreted proteins. Nature 329, 632–635 (1987).

    Article  CAS  Google Scholar 

  39. Yurchenco, P. D. & O'Rear, J. J. Basement membrane assembly. Methods Enzymol. 245, 489–518 (1994).

    Article  CAS  Google Scholar 

  40. Cardone, M. H., Smith, B. L., Song, W., Mochly-Rosen, D. & Mostov, K. E. Phorbol myristate acetate-mediated stimulation of transcytosis and apical recycling in MDCK cells. J. Cell Biol. 124, 717–727 (1994).

    Article  CAS  Google Scholar 

  41. Thiery, G., Bernier, J. & Bergeron, M. A simple technique for staining of cell membranes with imidazole and osmium tetroxide. J. Histochem. Cytochem. 43, 1079–1084 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sandra Huling and the UCSF Liver Center Core Facility for preparing electron micrographs; Peter Bacchetti for biostatistical support; Joshua Thaler for invaluable discussions and advice; Mirjam Zegers, W. James Nelson, Fay Shamanski, Erin Gensch, Henry Bourne, Cori Bargmann, Yuh-Nung Jan, Zena Werb and Daniel Kalman for a critical reading of the manuscript; and Karl Matlin for stimulating discussions. L.E.O. is the recipient of a National Defense Science and Engineering Graduate Fellowship and of a predoctoral fellowship from the American Heart Association. T.S.J. is supported by the National Science Council. S.H.H. is the recipient of an award from the Weimann Foundation. A.L.P. is supported by a NIH training grant postdoctoral fellowship. P.Y. is supported by a grant from the NIH. This investigation was supported by a DAMD grant and NIH grants to K.E.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith E. Mostov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Brien, L., Jou, TS., Pollack, A. et al. Rac1 orientates epithelial apical polarity through effects on basolateral laminin assembly. Nat Cell Biol 3, 831–838 (2001). https://doi.org/10.1038/ncb0901-831

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-831

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing