Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

A new view of mRNA export: Separating the wheat from the chaff

Current models for the export of messenger RNA share the notion that the highly abundant class of nuclear RNA-binding proteins — the hnRNP proteins — have a key role in exporting mRNA. But recent studies have led to a new understanding of several non-hnRNP proteins, including SR proteins and the conserved mRNA export factor ALY, which are recruited to the mRNA during pre-mRNA splicing. These studies, together with older work on hnRNP particles and assembly of the spliceosome, lead us to a new view of mRNA export. In our model, the non-hnRNP factors form a splicing-dependent mRNP complex that specifically targets mature mRNA for export, while hnRNP proteins retain introns in the nucleus. A machinery that is conserved between yeast and higher eukaryotes functions to export the mRNA.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: New model for mRNA export.

References

  1. Dreyfuss, G., Matunis, M. J., Pinol-Roma, S. & Burd, C. G. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62, 289–321 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Pinol-Roma, S., Choi, Y. D., Matunis, M. J. & Dreyfuss, G. Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins. Genes Dev. 2, 215–227 (1988); erratum ibid. 2, 490 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Frendewey, D. & Keller, W. Stepwise assembly of a pre-mRNA splicing complex requires U-snRNPs and specific intron sequences. Cell 42, 355–367 (1985).

    Article  CAS  PubMed  Google Scholar 

  4. Bennett, M., Pinol-Roma, S., Staknis, D., Dreyfuss, G. & Reed, R. Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol. Cell. Biol. 12, 3165–3175 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Michaud, S. & Reed, R. An ATP-independent complex commits pre-mRNA to the mammalian spliceosome assembly pathway. Genes Dev. 5, 2534–2546 (1991).

    Article  CAS  PubMed  Google Scholar 

  6. Abdul-Manan, N. & Williams, K. R. hnRNP A1 binds promiscuously to oligoribonucleotides: utilization of random and homo-oligonucleotides to discriminate sequence from base-specific binding. Nucleic Acids Res. 24, 4063–4070. (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Luo, M. & Reed, R. Splicing is required for rapid and efficient mRNA export in metazoans. Proc. Natl Acad. Sci. USA 96, 14937–14942 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Staknis, D. & Reed, R. SR proteins promote the first specific recognition of Pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14, 7670–7682 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pinol-Roma, S. & Dreyfuss, G. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355, 730–732 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Nakielny, S. & Dreyfuss, G. The hnRNP C proteins contain a nuclear retention sequence that can override nuclear export signals. J. Cell Biol. 134, 1365–1373 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Kramer, A. The structure and function of proteins involved in mammalian pre-mRNA splicing. Annu. Rev. Biochem. 65, 367–409 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Caceres, J. F., Screaton, G. R. & Krainer, A. R. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12, 55–66 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Graveley, B. R. Sorting out the complexity of SR protein functions. RNA 6, 1197–1211 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu, X. D. & Maniatis, T. The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3′ splice site. Proc. Natl Acad. Sci. USA 89, 1725–1729 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Spector, D. L. Macromolecular domains within the cell nucleus. Annu. Rev. Cell Biol. 9, 265–315 (1993).

    Article  CAS  PubMed  Google Scholar 

  16. Blencowe, B. J., Nickerson, J. A., Issner, R., Penman, S. & Sharp, P. A. Association of nuclear matrix antigens with exon-containing splicing complexes. J. Cell Biol. 127, 593–607 (1994).

    Article  CAS  PubMed  Google Scholar 

  17. Le Hir, H., Moore, M. J. & Maquat, L. E. Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. Genes Dev. 14, 1098–1108 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Le Hir, H., Izaurralde, E., Maquat, L. E. & Moore, M. J. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions. EMBO J. 19, 6860–6869 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lee, M. S., Henry, M. & Silver, P. A. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes Dev. 10, 1233–1246 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Birney, E., Kumar, S. & Krainer, A. R. Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res. 21, 5803–5816 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mattaj, I. W. & Englmeier, L. Nucleocytoplasmic transport: the soluble phase. Annu. Rev. Biochem. 67, 265–306 (1998).

    Article  CAS  PubMed  Google Scholar 

  22. Bachi, A. et al. The C-terminal domain of TAP interacts with the nuclear pore complex and promotes export of specific CTE-bearing RNA substrates. RNA 6, 136–158 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Clouse, K. N., Luo, M. J., Zhou, Z. & Reed, R. A Ran-independent pathway for export of spliced mRNA. Nature Cell Biol. 3, 97–99 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Cullen, B. R. Nuclear RNA export pathways. Mol. Cell. Biol. 20, 4181–4187 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segref, A. et al. Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J. 16, 3256–3271 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santos-Rosa, H. et al. Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol. Cell. Biol. 18, 6826–6838 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Del Priore, V., Snay, C. A., Bahr, A. & Cole, C. N. The product of the Saccharomyces cerevisiae RSS1 gene, identified as a high-copy suppressor of the rat7-1 temperature-sensitive allele of the RAT7/NUP159 nucleoporin, is required for efficient mRNA export. Mol. Biol. Cell 7, 1601–1621 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murphy, R. & Wente, S. R. An RNA-export mediator with an essential nuclear export signal. Nature 383, 357–360 (1996).

    Article  CAS  PubMed  Google Scholar 

  29. Murphy, R., Watkins, J. L. & Wente, S. R. GLE2, a Saccharomyces cerevisiae homologue of the Schizosaccharomyces pombe export factor RAE1, is required for nuclear pore complex structure and function. Mol. Biol. Cell 7, 1921–1937 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Snay-Hodge, C. A., Colot, H. V., Goldstein, A. L. & Cole, C. N. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17, 2663–2676 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tseng, S. S. et al. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17, 2651–2662 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Strasser, K. & Hurt, E. Yra1p, a conserved nuclear RNA-binding protein, interacts directly with Mex67p and is required for mRNA export. EMBO J. 19, 410–420 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cole, C. N. mRNA export: the long and winding road. Nature Cell Biol. 2, E55–E58 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Katahira, J. et al. The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J. 18, 2593–2609 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pritchard, C. E., Fornerod, M., Kasper, L. H. & van Deursen, J. M. RAE1 is a shuttling mRNA export factor that binds to a GLEBS-like NUP98 motif at the nuclear pore complex through multiple domains. J. Cell Biol. 145, 237–254 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kraemer, D. & Blobel, G. mRNA binding protein mrnp 41 localizes to both nucleus and cytoplasm. Proc. Natl Acad. Sci. USA 94, 9119–9124 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Watkins, J. L., Murphy, R., Emtage, J. L. & Wente, S. R. The human homologue of Saccharomyces cerevisiae Gle1p is required for poly(A)+ RNA export. Proc. Natl Acad. Sci. USA 95, 6779–6784 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schmitt, C. et al. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18, 4332–4347 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stutz, F. et al. REF, an evolutionary conserved family of hnRNP-like proteins, interacts with TAP/Mex67p and participates in mRNA nuclear export. RNA 6, 638–650 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, Z. et al. The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans. Nature 407, 401–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Rodrigues, J. P. et al. REF proteins mediate the export of spliced and unspliced mRNAs from the nucleus. Proc. Natl Acad. Sci. USA 98, 1030–1035 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gruter, P. et al. TAP, the human homolog of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol. Cell 1, 649–659 (1998).

    Article  CAS  PubMed  Google Scholar 

  43. Kang, Y. & Cullen, B. R. The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev. 13, 1126–1139 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kataoka, N. et al. Pre-mRNA splicing imprints mRNA in the nucleus with a novel RNA-binding protein that persists in the cytoplasm. Mol. Cell 6, 673–682 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. McGarvey, T. et al. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J. Cell Biol. 150, 309–320 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berget, S. M. Exon recognition in vertebrate splicing. J. Biol. Chem. 270, 2411–2414 (1995).

    Article  CAS  PubMed  Google Scholar 

  47. Reed, R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6, 215–220 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Amero, S. A. et al. Independent deposition of heterogeneous nuclear ribonucleoproteins and small nuclear ribonucleoprotein particles at sites of transcription. Proc. Natl Acad. Sci. USA 89, 8409–8413 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Grabowski, P. J., Seiler, S. R. & Sharp, P. A. A multicomponent complex is involved in the splicing of messenger RNA precursors. Cell 42, 345–353 (1985).

    Article  CAS  PubMed  Google Scholar 

  50. Legrain, P., Seraphin, B. & Rosbash, M. Early commitment of yeast pre-mRNA to the spliceosome pathway. Mol. Cell. Biol. 8, 3755–3760 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chang, D. D. & Sharp, P. A. Regulation by HIV Rev depends upon recognition of splice sites. Cell 59, 789–795 (1989).

    Article  CAS  PubMed  Google Scholar 

  52. Nakielny, S. & Dreyfuss, G. Transport of proteins and RNAs in and out of the nucleus. Cell 99, 677–690 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Visa, N. et al. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84, 253–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  54. Huang, Y. & Steitz, J. A. Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol. Cell 7, 899–905 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Luo, Z. Zhou and the other members of the Reed laboratory for comments and discussions. We also thank E. Hurt and K. Strasser for discussions.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reed, R., Magni, K. A new view of mRNA export: Separating the wheat from the chaff. Nat Cell Biol 3, E201–E204 (2001). https://doi.org/10.1038/ncb0901-e201

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb0901-e201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing