Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correcting improper chromosome–spindle attachments during cell division

Abstract

For accurate segregation of chromosomes during cell division, microtubule fibres must attach sister kinetochores to opposite poles of the mitotic spindle (bi-orientation). Aurora kinases are linked to oncogenesis1 and have been implicated in the regulation of chromosome–microtubule attachments2. Although loss of Aurora kinase activity causes an accumulation of mal-orientated chromosomes in dividing cells3,4, it is not known how the active kinase corrects improper chromosome attachments. The use of reversible small-molecule inhibitors allows activation of protein function in living vertebrate cells with temporal control. Here we show that by removal of small-molecule inhibitors, controlled activation of Aurora kinase during mitosis can correct chromosome attachment errors by selective disassembly of kinetochore–microtubule fibres, rather than by alternative mechanisms involving initial release of microtubules from either kinetochores or spindle poles5,6,7. Observation of chromosomes and microtubule dynamics with real-time high-resolution microscopy showed that mal-orientated, but not bi-orientated, chromosomes move to the spindle pole as both kinetochore–microtubule fibres shorten, followed by alignment at the metaphase plate. Our results provide direct evidence for a mechanism required for the maintenance of genome integrity during cell division.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of Aurora kinase is reversible.
Figure 2: Inhibition of Aurora kinase activity stabilizes chromosome mal-orientations.
Figure 3: Correction of chromosome mal-orientations after activation of Aurora kinase.
Figure 4: Mechanisms to correct syntelic chromosome mal-orientations during cell division.

Similar content being viewed by others

References

  1. Giet, R. & Prigent, C. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J. Cell Sci. 112, 3591–3601 (1999).

    CAS  PubMed  Google Scholar 

  2. Biggins, S. et al. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13, 532–544 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hauf, S. et al. The small molecule Hesperadin reveals a role for Aurora B in correcting kinetochore-microtubule attachment and in maintaining the spindle assembly checkpoint. J. Cell Biol. 161, 281–294 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tanaka, T.U. et al. Evidence that the Ipl1–Sli15 (Aurora kinase–INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108, 317–329 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Nicklas, R.B. How cells get the right chromosomes. Science 275, 632–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Ault, J.G. & Rieder, C.L. Chromosome mal-orientation and reorientation during mitosis. Cell Motil. Cytoskel. 22, 155–159 (1992).

    Article  CAS  Google Scholar 

  7. Nicklas, R.B. & Ward, S.C. Elements of error correction in mitosis: microtubule capture, release, and tension. J. Cell Biol. 126, 1241–1253 (1994).

    Article  CAS  PubMed  Google Scholar 

  8. Rieder, C.L. & Salmon, E.D. The vertebrate cell kinetochore and its roles during mitosis. Trends Cell Biol. 8, 310–318 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Walter, R. et al. in PCT Int. Appl. 112 ((Boehringer Ingelheim Pharma K.-G., Germany, WO, 2002).

  10. Mortlock, A.A. & Jung, F.H. in PCT Int. Appl. 62 ((Astrazeneca AB, Sweden; Astrazeneca UK Limited, WO, 2001).

  11. Straight, A.F. et al. Dissecting temporal and spatial control of cytokinesis with a myosin II Inhibitor. Science 299, 1743–1747 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Ditchfield, C. et al. Aurora B couples chromosome alignment with anaphase by targeting BubR1, Mad2 and Cenp-E to kinetochores. J. Cell Biol. 161, 267–280 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hsu, J.Y. et al. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102, 279–291 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Murata-Hori, M. & Wang, Y.L. The kinase activity of aurora B is required for kinetochore–microtubule interactions during mitosis. Curr. Biol. 12, 894–899 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Kallio, M.J., McCleland, M.L., Stukenberg, P.T. & Gorbsky, G.J. Inhibition of aurora B kinase blocks chromosome segregation, overrides the spindle checkpoint, and perturbs microtubule dynamics in mitosis. Curr. Biol. 12, 900–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Mayer, T.U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Kapoor, T.M., Mayer, T.U., Coughlin, M.L. & Mitchison, T.J. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J. Cell Biol. 150, 975–988 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Khodjakov, A., Copenagle, L., Gordon, M.B., Compton, D.A. & Kapoor, T.M. Minus-end capture of preformed kinetochore fibers contributes to spindle morphogenesis. J. Cell Biol. 160, 671–683 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rieder, C.L. & Alexander, S.P. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells. J. Cell Biol. 110, 81–95 (1990).

    Article  CAS  PubMed  Google Scholar 

  20. Skibbens, R.V., Skeen, V.P. & Salmon, E.D. Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism. J. Cell Biol. 122, 859–875 (1993).

    Article  CAS  PubMed  Google Scholar 

  21. Glover, D.M., Leibowitz, M.H., McLean, D.A. & Parry, H. Mutations in aurora prevent centrosome separation leading to the formation of monopolar spindles. Cell 81, 95–105 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Hannak, E., Kirkham, M., Hyman, A.A. & Oegema, K. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155, 1109–1116 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roghi, C. et al. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci. 111, 557–572 (1998).

    CAS  PubMed  Google Scholar 

  24. Murata-Hori, M., Tatsuka, M. & Wang, Y.L. Probing the dynamics and functions of aurora B kinase in living cells during mitosis and cytokinesis. Mol. Biol. Cell 13, 1099–1108 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, X. & Nicklas, R.B. Mitotic forces control a cell-cycle checkpoint. Nature 373, 630–632 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Biggins, S. & Murray, A.W. The budding yeast protein kinase Ipl1/Aurora allows the absence of tension to activate the spindle checkpoint. Genes Dev. 15, 3118–3129 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Waters, J.C., Chen, R.H., Murray, A.W. & Salmon, E.D. Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J. Cell Biol. 141, 1181–1191 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheeseman, I.M. et al. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111, 163–172 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. McEwen, B.F., Heagle, A.B., Cassels, G.O., Buttle, K.F. & Rieder, C.L. Kinetochore fiber maturation in PtK1 cells and its implications for the mechanisms of chromosome congression and anaphase onset. J. Cell Biol. 137, 1567–1580 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Cleveland, D.W., Mao, Y. & Sullivan, K.F. Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell 112, 407–421 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge A. North and The Rockefeller University Bioimaging Facility. We thank W. Brinkley for the generous gift of CREST antiserum. This work was supported by National Institutes of Health grants GM65933 (T.M.K.) and GM59363 (A.K.). M.A.L. is a Goelet fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarun M. Kapoor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lampson, M., Renduchitala, K., Khodjakov, A. et al. Correcting improper chromosome–spindle attachments during cell division. Nat Cell Biol 6, 232–237 (2004). https://doi.org/10.1038/ncb1102

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1102

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing