Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1

Abstract

Defects in kinetochore proteins often lead to aneuploidy and cancer. Mis12–Mtw1 is a conserved, essential kinetochore protein family. Here, we show that a Mis12 core complex exists in Schizosaccharomyces pombe and human cells. Nine polypeptides bind to human hMis12; two of these, HEC1 and Zwint-1, are authentic kinetochore proteins. Four other human proteins of unknown function (c20orf172, DC8, PMF1 and KIAA1570) correspond to yeast Mis12–Mtw1 complex components and are shown to be required for chromosome segregation in HeLa cells using RNA interference (RNAi). Surprisingly, hMis12 also forms a stable complex with the centromeric heterochromatin components HP1α and HP1γ. Double HP1 RNAi abolishes kinetochore localization of hMis12 and DC8. Therefore, centromeric HP1 may be the base to anchor the hMis12 core complex that is enriched with coiled coils and extends to outer Zwint-1 during mitosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S. pombe proteins that interact with spMis12.
Figure 2: Human hMis12-binding proteins are located in the kinetochore or heterochromatin.
Figure 3: Interactions of the hMis12-containing complex with HP1.
Figure 4: Single RNAi of c20orf172 and double RNAi of HP1α and HP1γ.

Similar content being viewed by others

Accession codes

Accessions

BINDPlus

GenBank/EMBL/DDBJ

References

  1. Goshima, G., Kiyomitsu, T., Yoda, K. & Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J. Cell Biol. 160, 25–39 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shelby, R. D., Monier, K. & Sullivan, K. F. Chromatin assembly at kinetochores is uncoupled from DNA replication. J. Cell Biol. 151, 1113–1118 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Amor, D. J., Kalitsis, P., Sumer, H. & Andy Choo, K. H. Building the centromere: from foundation proteins to 3D organization. Trends Cell Biol. 14, 359–368 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Hayashi, T. et al. Mis16 and Mis18 are required for CENP-A loading and histone deacetylation at centromeres. Cell 118, 715–729 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Euskirchen, G. M. Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. Eukaryot. Cell 1, 229–240 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goshima, G., Iwasaki, O., Obuse, C. & Yanagida, M. The role of Ppe1/PP6 phosphatase for equal chromosome segregation in fission yeast kinetochore. EMBO J. 22, 2752–2763 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Westermann, S. et al. Architecture of the budding yeast kinetochore reveals a conserved molecular core. J. Cell Biol. 163, 215–222 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nekrasov, V. S., Smith, M. A., Peak-Chew, S. & Kilmartin, J. V. Interactions between centromere complexes in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 4931–4946 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pinsky, B. A., Tatsutani, S. Y., Collins, K. A. & Biggins, S. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell 5, 735–745 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Scharfenberger, M. et al. Nsl1p is essential for the establishment of bipolarity and the localization of the Dam–Duo complex. EMBO J. 22, 6584–6597 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. De Wulf, P., McAinsh, A. D. & Sorger, P. K. Hierarchical assembly of the budding yeast kinetochore from multiple subcomplexes. Genes Dev. 17, 2902–2921 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saitoh, S., Takahashi, K. & Yanagida, M. Mis6, a fission yeast inner centromere protein, acts during G1/S and forms specialized chromatin required for equal segregation. Cell 90, 131–143 (1997).

    Article  CAS  PubMed  Google Scholar 

  13. Martin-Lluesma, S., Stucke, V. M. & Nigg, E. A. Role of Hec1 in spindle checkpoint signaling and kinetochore recruitment of Mad1/Mad2. Science 297, 2267–2270 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. McCleland, M. L. et al. The vertebrate Ndc80 complex contains Spc24 and Spc25 homologs, which are required to establish and maintain kinetochore-microtubule attachment. Curr. Biol. 14, 131–137 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Starr, D. A. et al. HZwint-1, a novel human kinetochore component that interacts with HZW10. J. Cell Sci. 113, 1939–1950 (2000).

    CAS  PubMed  Google Scholar 

  16. Van Hooser, A. A. et al. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J. Cell Sci. 114, 3529–3542 (2001).

    CAS  PubMed  Google Scholar 

  17. Williams, B. C. & Goldberg, M. L. Determinants of Drosophila zw10 protein localization and function. J. Cell Sci. 107, 785–798 (1994).

    CAS  PubMed  Google Scholar 

  18. James, T. C. et al. Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50, 170–180 (1989).

    CAS  PubMed  Google Scholar 

  19. Saunders, W. S. et al. Molecular cloning of a human homologue of Drosophila heterochromatin protein HP1 using anti-centromere autoantibodies with anti-chromo specificity. J. Cell Sci. 104, 573–582 (1993).

    PubMed  Google Scholar 

  20. Maison, C. & Almouzni, G. HP1 and the dynamics of heterochromatin maintenance. Nature Rev. Mol. Cell Biol. 5, 296–304 (2004).

    Article  CAS  Google Scholar 

  21. Ainsztein, A. M., Kandels-Lewis, S. E., Mackay, A. M. & Earnshaw, W. C. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143, 1763–1774 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nielsen, A. L. et al. Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol. Cell 7, 729–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Hayakawa, T., Haraguchi, T., Masumoto, H. & Hiraoka, Y. Cell cycle behavior of human HP1 subtypes: distinct molecular domains of HP1 are required for their centromeric localization during interphase and metaphase. J. Cell Sci. 116, 3327–3338 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Quivy, J. P. et al. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J. 23, 3516–3526 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. DeLuca, J. G. et al. Nuf2 and Hec1 are required for retention of the checkpoint proteins Mad1 and Mad2 to kinetochores. Curr. Biol. 13, 2103–2109 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Kanda, T., Sullivan, K. F. & Wahl, G. M. Histone–GFP fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol. 8, 377–385 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Blower, M. D. & Karpen, G. H. The role of Drosophila CID in kinetochore formation, cell-cycle progression and heterochromatin interactions. Nature Cell Biol. 3, 730–739 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Goshima, G., Saitoh, S. & Yanagida, M. Proper metaphase spindle length is determined by centromere proteins Mis12 and Mis6 required for faithful chromosome segregation. Genes Dev. 13, 1664–1677 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Takahashi, K., Chen, E. S. & Yanagida, M. Requirement of Mis6 centromere connector for localizing a CENP-A-like protein in fission yeast. Science 288, 2215–2219 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Tatebayashi, K., Kato, J. & Ikeda, H. Isolation of a Schizosaccharomyces pombe rad21ts mutant that is aberrant in chromosome segregation, microtubule function, DNA repair and sensitive to hydroxyurea: possible involvement of Rad21 in ubiquitin-mediated proteolysis. Genetics 148, 49–57 (1998).

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Ohta, S., Tatsumi, Y., Fujita, M., Tsurimoto, T. & Obuse, C. The ORC1 cycle in human cells: II. Dynamic changes in the human ORC complex during the cell cycle. J. Biol. Chem. 278, 41535–41540 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Ohta, S., Shiomi, Y., Sugimoto, K., Obuse, C. & Tsurimoto, T. A proteomics approach to identify proliferating cell nuclear antigen (PCNA)-binding proteins in human cell lysates. Identification of the human CHL12/RFCs2-5 complex as a novel PCNA-binding protein. J. Biol. Chem. 277, 40362–40367 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Perkins, D. N., Pappin, D. J., Creasy, D. M. & Cottrell, J. S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Nabeshima, K. et al. Dynamics of centromeres during metaphase–anaphase transition in fission yeast: Dis1 is implicated in force balance in metaphase bipolar spindle. Mol. Biol. Cell 11, 3211–3225 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Y.-I. Nabeshima and A. Imura for immunopurification with the anti-GFP antibody; K. Yoda for anti-CENP-C and anti-CENP-A antibodies; and H. Saya for a Hela cell line. This work was supported by grants (Specially Promoted COE Research to M.Y. and Scientific Research to C.O.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan. T.K., Y.T. and G.G. acknowledge Fellowships from the Japan Science Promotion Society (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuhiro Yanagida.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information, Movie S1 (MOV 1789 kb)

Supplementary Information, Figures

Fig. S1, Fig. S2, Fig. S3, Fig. S4 and Fig. S5 (PDF 487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Obuse, C., Iwasaki, O., Kiyomitsu, T. et al. A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1. Nat Cell Biol 6, 1135–1141 (2004). https://doi.org/10.1038/ncb1187

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1187

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing