Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1

Abstract

Excitotoxic brain lesions initially result in the primary destruction of brain parenchyma, after which microglial cells migrate towards the sites of injury. At these sites, the cells produce large quantities of oxygen radicals and cause secondary damage that accounts for most of the loss of brain function. Here we show that this microglial migration is strongly controlled in living brain tissue by expression of the integrin CD11a, regulated by the nuclear enzyme poly(ADP-ribose) polymerase-1 (PARP-1) through the formation of a nuclear PARP–NF-κB-protein complex. Downregulation of PARP or CD11a by transfection with antisense DNA abrogated microglial migration almost completely and prevented neurons from secondary damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 4: CD11a expression is dependent on NF-κB-translocation and PARP activity.
Figure 1: Downregulation of PARP-1 in BV-2 microglial cells protects from secondary neuronal damage in living OHSCs.
Figure 5: Downregulation of PARP-1 in primary microglial cells inhibits migration towards the sites of neuronal injury and protects from neuronal damage in living OHSCs.
Figure 2: Microglial migration towards the sites of neuronal injury is strongly controlled by PARP-1.
Figure 3: PARP-1 regulates CD11a expression in activated BV-2 microglial cells, which is required for the migration towards the sites of neuronal injury.

Similar content being viewed by others

References

  1. Mabuchi, T. et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 31, 1735–1743 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Stoll, G., Jander, S. & Schroeter, M. Inflammation and glial responses in ischemic brain lesions. Prog. Neurobiol. 56, 149–171 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Eliasson, M. J. et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nature Med. 3, 1089–1095 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, J., Dawson, V. L., Dawson, T. M. & Snyder, S. H. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263, 687–689 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Ha, H. C. & Snyder, S. H. Poly(ADP-ribose) polymerase-1 in the nervous system. Neurobiol. Dis. 7, 225–239 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Dantzer, F. et al. Involvement of poly(ADP-ribose) polymerase in base excision repair. Biochimie 81, 69–75 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Pieper, A. A. et al. Poly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proc. Natl Acad. Sci. USA 97, 1845–1850 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Colton, C. A. & Gilbert, D. L. Microglia, an in vivo source of reactive oxygen species in the brain. Adv. Neurol. 59, 321–326 (1993).

    CAS  PubMed  Google Scholar 

  9. Ullrich, O. et al. Turnover of oxidatively damaged proteins in BV-2 microglial cells is linked to their activation state by poly-ADP-ribose polymerase. FASEB J. 15, 1460–1462 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Hailer, N. P., Heppner, F. L., Hass, D. & Nitsch, R. Astrocytic factors deactivate antigen presenting cells that invade the central nervous system. Brain Pathol. 8, 459–474 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. Hailer, N. P., Heppner, F. L., Haas, D. & Nitsch, R. Fluorescent dye pre-labelled microglial cells migrate into hippocampal slice cultures and ramify. Eur. J. Neurosci. 9, 863–866 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Heppner, F. L., Skutella, T., Hailer, N. P., Haas, D. & Nitsch, R. Activated microglial cells migrate towards site of excitotoxic neuronal injury inside organotypic hippocampal slice cultures. Eur. J. Neurosci. 10, 3284–3290 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Adamchik, Y., Frantseva, M. V., Weisspapir, M., Carlen, P. L. & Perez Velazquez, J. L. Methods to induce primary and secondary traumatic damage in organotypic hippocampal slice cultures. Brain Res. Protocols 5, 153–158 (2000).

    Article  CAS  Google Scholar 

  14. Laake, J. H., Haug, F.-M., Wieloch, T. & Ottersen, O. P. A simple in vitro model of ischemia based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res. Protocols 4, 173–184 (1999).

    Article  CAS  Google Scholar 

  15. Roebuck, K. A. & Finnegan, A. Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J. Leukoc. Biol. 66, 876–888 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Oliver, F. J. et al. Resistance to endotoxic shock as a consequence of defective NF-κB activation in poly(ADP-ribose) polymerase-1 deficient mice. EMBO J. 18, 4446–4454 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hassa, P. & Hottiger, M. O. A role of poly(ADP-ribose) polymerase in NF-κB transcriptional activation. Biol. Chem. 380, 953–959 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Pierce, J. W. et al. Novel inhibitors of cytokine-induced I-κB phosphorylation and endothelial cell adhesion molecule expression show anti-inflammatory effects in vivo. J. Biol. Chem. 272, 21096–21103 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. D'Amours, D., Desnoyers, S., D'Silva, I. & Poirier, G. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem. J. 342, 249–268 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gabriel, C., Justicia, C., Camins, A. & Planas, A. M. Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain. Res. 65, 61–69 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Heyen, J. R., Ye, S., Finck, B. N. & Johnson, R. W. Interleukin (IL)-10 inhibits IL-6 production in microglia by preventing activation of NF-κB. Brain. Res. Mol. Brain Res. 77, 138–147 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Kameoka, M. et al. Evidence for regulation of NF-κB by poly(ADP-ribose) polymerase. Biochem. J. 346, 641–649 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Boulikas, T. Poly(ADP-ribosyl)ation, DNA strand breaks, chromatin and cancer. Toxicol. Lett. 67, 129–150 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Bielinska, A., Kukowska-Latallo, J. F., Johnson, J., Tomalia, D. A. & Baker, J. R. Regulation of in vitro gene expression using antisense oligonucleotides or antisense expression plasmids transfected using starburst PAMAM dendrimers. Nucleic Acid Res. 24, 2176–2182 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Bielinska, A. U., Kukowska-Latallo, J. F. & Baker, J. R. The interaction of plasmid DNA with polyamidoamine dendrimers: mechanism of complex formation and analysis of alterations induced in nuclease sensitivity and transcriptional activity of the complexed DNA. Biochim. Biophys. Acta 1353, 180–90 (1997).

    Article  CAS  PubMed  Google Scholar 

  26. Banati, R. B. & Graeber, M. B. Surveillance, intervention and cytotoxicity: is there a protective role of microglia? Dev. Neurosci. 16, 114–127 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Lehrmann, E. et al. Microglia and macrophages are major sources of locally produced transforming growth factor-β1 after transient middle cerebral artery occlusion in rats. Glia 24, 437–448 (1998).

    Article  CAS  PubMed  Google Scholar 

  28. Schlapbach, R. et al. TGF-β induces the expression of the FLICE-inhibitory protein and inhibits Fas-mediated apoptosis of microglia. Eur. J. Immunol. 30, 3680–3688 (2000).

    Article  CAS  PubMed  Google Scholar 

  29. Flanders, K. C., Ren, R. F. & Lippa, C. F. Transforming growth factor-betas in neurodegenerative disease. Prog. Neurobiol. 54, 71–85 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Krupitza, G. & Cerutti, P. ADP-ribosylation of ADPR-transferase and topoisomerase I in intact mouse epidermal cells JB6. Biochemistry 28, 2034–2040 (1989).

    Article  CAS  PubMed  Google Scholar 

  31. Krupitza, G. & Cerutti, P. Poly(ADP-ribosylation) of histones in intact human keratinocytes. Biochemistry 28, 4054–4060 (1989).

    Article  CAS  PubMed  Google Scholar 

  32. Ohashi, Y., Itaya, A., Tanaka, Y., Yoshihara, K., Kamiya, T. & Matsukage, A. Poly(ADP-ribosyl)ation of DNA polymerase β in vitro. Biochem. Biophys. Res. Commun. 140, 666–673 (1986).

    Article  CAS  PubMed  Google Scholar 

  33. Tsai, Y. J., Aoki, T., Maruta, H. et al. Mouse mammary tumor virus gene expression is suppressed by oligomeric ellagitannins, novel inhibitors of poly(ADP-ribose) glycohydrolase. J. Biol. Chem. 267, 14436–14442 (1992).

    CAS  PubMed  Google Scholar 

  34. Wesierska-Gadek, J., Bugajska-Schretter, A. & Cerni, C. ADP-ribosylation of p53 tumor suppressor protein: mutant but not wild-type p53 is modified. J. Cell. Biochem. 62, 90–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  35. Lautier, D., Lagueux, J., Thibodeau, J., Menard, L. & Poirier, G. G. Molecular and biochemical features of poly(ADP-ribose) metabolism. Mol. Cell. Biochem. 122, 171–193 (1993).

    Article  CAS  PubMed  Google Scholar 

  36. Perrella et al. High mobility group-I(Y) protein facilitates nuclear factor-κB binding and transactivation of the inducible nitric oxide synthetase promoter/enhancer. J. Biol. Chem. 274, 9045–9052 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Gahmberg, C. G., Valmu, L., Fagerholm, S. et al. Leukocyte integrins and inflammation. Cell. Mol. Life Sci. 54, 549–555 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Kim, J. S., Chopp, M., Chen, H., Levine, S. R., Carey, J. L. & Welch, K. M. Adhesive glykoproteins CD11a and CD18 are upregulated in the leukocytes from patients with ischemic stroke and transient ischemic attacks. J. Neurol. Sci. 128, 45–50 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Ullrich, O. et al. Poly-ADP-ribose-polymerase activates nuclear proteasome to degrade oxidatively damaged histones. Proc. Natl Acad. Sci. USA 96, 6223–6228 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Nagayama, T. et al. Activation of poly(ADP-ribose) polymerase in the rat hippocampus may contribute to cellular recovery following sublethal transient global ischemia. J. Neurochem. 74, 1636–1645 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Szabo, C. et al. Inhibition of poly(ADP-ribose) synthetase attenuates neutrophil recruitment and exerts antiinflammatory effects. J. Exp. Med. 186, 1041–1049 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pieper, A. A. et al. Myocardial postischemic injury is reduced by polyADPribose polymerase-1 gene disruption. Mol. Med. 6, 271–282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zingarelli, B., Cuzzocrea, S., Zsengeller, Z., Salzman, A. L. & Szabo, C. Protection against myocardial ischemia and reperfusion injury by 3-aminobenzamide, an inhibitor of poly(ADP-ribose)synthetase. Cardiovasc. Res. 36, 205–215 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Giulian, D. & Baker, T. J. Characterization of ameboid microglia isolated from developing mammalian brain. J. Neurosci. 6, 2163–2178 (1986).

    Article  CAS  PubMed  Google Scholar 

  45. Emig, S., Schmalz, D., Shakibaei, M. & Buchner, K. The nuclear pore complex protein p62 is one of several sialic acid-containing proteins of the nuclear envelope. J. Biol. Chem. 270, 13787–13793 (1995).

    Article  CAS  PubMed  Google Scholar 

  46. Zwilling, S., Konig, H. & Wirth, T. High mobility group protein 2 functionally interacts with the POU domains of octamer transcription factors. EMBO J. 14, 1198–1208 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sambrook, J., Fritsch, E. F. & Maniatis, T. Molecular Cloning 2nd edn (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1989).

    Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Forschunsgemeinschaft to O.U. (UL177/2-1) and to R.N. (SFB507/C1). We thank T. Irico for careful secretary assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Ullrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ullrich, O., Diestel, A., Eyüpoglu, I. et al. Regulation of microglial expression of integrins by poly(ADP-ribose) polymerase-1. Nat Cell Biol 3, 1035–1042 (2001). https://doi.org/10.1038/ncb1201-1035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1035

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing