Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MAP kinase dynamics in response to pheromones in budding yeast

Abstract

Although scaffolding is a major regulator of mitogen-activated protein kinase (MAPK) pathways, scaffolding proteins are poorly understood. During yeast mating, MAPK Fus3p is phosphorylated by MAPKK Ste7p, which is activated by MAPKKK Ste11p. This MAPK module interacts with the scaffold molecule Ste5p. Here we show that Ste11p and Ste7p were predominantly cytoplasmic proteins, while Ste5p and Fus3p were found in the nucleus and the cytoplasm. Ste5p, Ste7p and Fus3p also localized to tips of mating projections in pheromone-treated cells. Using fluorescence recovery after photobleaching (FRAP), we demonstrate that Fus3p rapidly shuttles between the nucleus and the cytoplasm independently of pheromones, Fus3p phosphorylation and Ste5p. Membrane-bound Ste5p can specifically recruit Fus3p and Ste7p to the cell cortex. Ste5p remains stably bound at the plasma membrane, unlike activated Fus3p, which dissociates from Ste5p and translocates to the nucleus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular localization of components of the pheromone response pathway.
Figure 2: Nuclear FRAP of Fus3p, Ste5p and the Dig proteins.
Figure 3: Fus3p–GFP shuttles between nucleus and cytoplasm in an α-factor-and phosphorylation-independent manner.
Figure 4: Fus3p–GFP transiently binds to Ste5p at the plasma membrane.
Figure 5: Phosphorylation of Fus3p may trigger its dissociation from Ste5p at the plasma membrane.
Figure 6: A model for the dynamic behaviour of Ste5p and Fus3p in response to pheromones.

Similar content being viewed by others

References

  1. Cobb, M. H. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71, 479–500 (1999).

    Article  CAS  Google Scholar 

  2. Whitmarsh, A. J. & Davis, R. J. Structural organization of MAP-kinase signalling modules by scaffold proteins in yeast and mammals. Trends Biochem. Sci. 23, 481–485 (1998).

    Article  CAS  Google Scholar 

  3. Schaeffer, H. J. & Weber, M. J. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell Biol. 19, 2435–2444 (1999).

    Article  CAS  Google Scholar 

  4. Elion, E. A. Pheromone response, mating and cell biology. Curr. Opin. Microbiol. 3, 573–581 (2000).

    Article  CAS  Google Scholar 

  5. Dohlmanm, H. & Thorner, J. Regulation of G protein-initiated signal transduction in yeast: paradigms and principles. Annu. Rev. Biochem. 70, 703–754 (2001).

    Article  Google Scholar 

  6. Whiteway, M. S. et al. Association of the yeast pheromone response G protein beta gamma subunits with the MAP kinase scaffold Ste5p. Science 269, 1572–1575 (1995).

    Article  CAS  Google Scholar 

  7. Leeuw, T. et al. Interaction of a G-protein beta-subunit with a conserved sequence in Ste20/PAK family protein kinases. Nature 391, 191–195 (1998).

    Article  CAS  Google Scholar 

  8. Choi, K. Y., Satterberg, B., Lyons, D. M. & Elion, E. A. Ste5 tethers multiple protein kinases in the MAP kinase cascade required for mating in S. cerevisiae. Cell 78, 499–512 (1994).

    Article  CAS  Google Scholar 

  9. Kranz, J. E., Satterberg, B. & Elion, E. A. The MAP kinase Fus3 associates with and phosphorylates the upstream signalling component Ste5. Genes Dev. 8, 313–327 (1994).

    Article  CAS  Google Scholar 

  10. Marcus, S., Polverino, A., Barr, M. & Wigler, M. Complexes between STE5 and components of the pheromone-responsive mitogen-activated protein kinase module. Proc. Natl Acad. Sci. USA 91, 7762–7766 (1994).

    Article  CAS  Google Scholar 

  11. Cook, J. G., Bardwell, L., Kron, S. J. & Thorner, J. Two novel targets of the MAP kinase Kss1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev. 10, 2831–2848 (1996).

    Article  CAS  Google Scholar 

  12. Tedford, K., Kim, S., Sa, D., Stevens, K. & Tyers, M. Regulation of the mating pheromone and invasive growth responses in yeast by two MAP kinase substrates. Curr. Biol. 7, 228–238 (1997).

    Article  CAS  Google Scholar 

  13. Gustin, M. C., Albertyn, J., Alexander, M. & Davenport, K. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62, 1264–1300 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Levin, D. E. & Errede, B. The proliferation of MAP kinase signalling pathways in yeast. Curr. Opin. Cell Biol. 7, 197–202 (1995).

    Article  CAS  Google Scholar 

  15. Posas, F. & Saito, H. Osmotic activation of the HOG MAPK pathway via Ste11p MAPKKK: scaffold role of Pbs2p MAPKK. Science 276, 1702–1705 (1997).

    Article  CAS  Google Scholar 

  16. Madhani, H. D. & Fink, G. R. The riddle of MAP kinase signalling specificity. Trends Genet. 14, 151–155 (1998).

    Article  CAS  Google Scholar 

  17. Ferrigno, P., Posas, F., Koepp, D., Saito, H. & Silver, P. A. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin beta homologs NMD5 and XPO1. EMBO J. 17, 5606–5614 (1998).

    Article  CAS  Google Scholar 

  18. Peter, M., Neiman, A. M., Park, H. O., vanLohuizen, M. & Herskowitz, I. Functional Analysis of the interaction between the small GTP-binding protein Cdc42 and the Ste20 protein kinase in yeast. EMBO J. 15, 7046–7059 (1996).

    Article  CAS  Google Scholar 

  19. Leberer, E. et al. Functional characterization of the Cdc42p-binding domain of yeast Ste20p protein kinase. EMBO J. 16, 83–97 (1997).

    Article  CAS  Google Scholar 

  20. Pryciak, P. M. & Huntress, F. A. Membrane recruitment of the kinase cascade scaffold protein Ste5 by the G beta gamma complex underlies activation of the yeast pheromone response pathway. Genes Dev. 12, 2684–2697 (1998).

    Article  CAS  Google Scholar 

  21. Mahanty, S. K., Wang, Y., Farley, F. W. & Elion, E. A. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 98, 501–512 (1999).

    Article  CAS  Google Scholar 

  22. Choi, K. Y., Kranz, J. E., Mahanty, S. K., Park, K. S. & Elion, E. A. Characterization of Fus3 localization: active Fus3 localizes in complexes of varying size and specific activity. Mol. Biol. Cell 10, 1553–1568 (1999).

    Article  CAS  Google Scholar 

  23. Khokhlatchev, A. V. et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 93, 605–615 (1998).

    Article  CAS  Google Scholar 

  24. Adachi, M., Fukuda, M. & Nishida, E. Two co-existing mechanisms for nuclear import of MAP kinase: passive diffusion of a monomer and active transport of a dimer. EMBO J. 18, 5347–5358 (1999).

    Article  CAS  Google Scholar 

  25. Gaits, F., Degols, G., Shiozaki, K. & Russell, P. Phosphorylation and association with the transcription factor Atf1 regulate localization of Spc1/Sty1 stress-activated kinase in fission yeast. Genes Dev. 12, 1464–1473 (1998).

    Article  CAS  Google Scholar 

  26. Mattison, C. P. & Ota, I. M. Two protein tyrosine phosphatases, Ptp2 and Ptp3, modulate the subcellular localization of the Hog1 MAP kinase in yeast. Genes Dev. 14, 1229–1235 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Fukuda, M., Gotoh, Y. & Nishida, E. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16, 1901–1908 (1997).

    Article  CAS  Google Scholar 

  28. Inouye, C., Dhillon, N., Durfee, T., Zambryski, P. C. & Thorner, J. Mutational analysis of STE5 in the yeast Saccharomyces cerevisiae: application of a differential interaction trap assay for examining protein-protein interactions. Genetics 147, 479–492 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. White, J. & Stelzer, E. Photobleaching GFP reveals protein dynamics inside live cells. Trends Cell Biol. 9, 61–65 (1999).

    Article  CAS  Google Scholar 

  30. Gorlich, D. & Kutay, U. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15, 607–660 (1999).

    Article  CAS  Google Scholar 

  31. Blondel, M. et al. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev. 13, 2284–2300 (1999).

    Article  CAS  Google Scholar 

  32. Oehlen, B. & Cross, F. R. Signal transduction in the budding yeast Saccharomyces cerevisiae. Curr. Opin. Cell Biol. 6, 836–841 (1994).

    Article  CAS  Google Scholar 

  33. Gartner, A., Nasmyth, K. & Ammerer, G. Signal transduction in Saccharomyces cerevisiae requires tyrosine and threonine phosphorylation of FUS3 and KSS1. Genes Dev. 6, 1280–1292 (1992).

    Article  CAS  Google Scholar 

  34. van Drogen, F., O'Rourke, S., Stucke, V., Jaquenoud, M. & Peter, M. Phosphorylation of the MEKK Ste11p by the PAK-like kinase Ste20p is required for MAP kinase signalling in vivo. Curr. Biol. 10, 630–639 (2000).

    Article  CAS  Google Scholar 

  35. Doi, K. et al. MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. EMBO J. 13, 61–70 (1994).

    Article  CAS  Google Scholar 

  36. Garrison, T. R. et al. Feedback phosphorylation of an RGS protein by MAP kinase in yeast. J. Biol. Chem. 274, 36387–36391 (1999).

    Article  CAS  Google Scholar 

  37. Sharrocks, A. D., Yang, S. H. & Galanis, A. Docking domains and substrate-specificity determination for MAP kinases. Trends Biochem. Sci. 25, 448–453 (2000).

    Article  CAS  Google Scholar 

  38. Sette, C., Inouye, C. J., Stroschein, S. L., Iaquinta, P. J. & Thorner, J. Mutational analysis suggests that activation of the yeast pheromone response mitogen-activated protein kinase pathway involves conformational changes in the Ste5 scaffold protein. Mol. Biol. Cell 11, 4033–4049 (2000).

    Article  CAS  Google Scholar 

  39. Feng, Y., Song, L. Y., Kincaid, E., Mahanty, S. K. & Elion, E. A. Functional binding between Gβ and the LIM domain of Ste5 is required to activate the MEKK Ste11. Curr. Biol. 8, 267–278 (1998).

    Article  CAS  Google Scholar 

  40. Moskow, J. J., Gladfelter, A. S., Lamson, R. E., Pryciak, P. M. & Lew, D. J. Role of Cdc42p in pheromone-stimulated signal transduction in Saccharomyces cerevisiae. Mol. Cell Biol. 20, 7559–7571 (2000).

    Article  CAS  Google Scholar 

  41. Reiser, V., Salah, S. M. & Ammerer, G. Polarized localization of yeast Pbs2 depends on osmostress, the membrane protein Sho1 and Cdc42. Nature Cell Biol. 2, 620–627 (2000).

    Article  CAS  Google Scholar 

  42. Raitt, D. C., Posas, F. & Saito, H. Yeast Cdc42 GTPase and Ste20 PAK-like kinase regulate Sho1-dependent activation of the Hog1 MAPK pathway. EMBO J. 19, 4623–4631 (2000).

    Article  CAS  Google Scholar 

  43. Guthrie, C. & Fink, G. R. Guide to Yeast Genetics and Molecular Biology (Academic, San Diego, 1991)).

    Google Scholar 

  44. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Greene and Wiley-Interscience, New York, 1991).

    Google Scholar 

  45. Jaquenoud, M., Gulli, M. P., Peter, K. & Peter, M. The Cdc42p effector Gic2p is targeted for ubiquitin-dependent degradation by the SCFGrr1 complex. EMBO J. 17, 5360–5373 (1998).

    Article  CAS  Google Scholar 

  46. Valtz, N. & Peter, M. Functional analysis of FAR1 in yeast. Methods Enzymol. 283, 350–365 (1997).

    Article  CAS  Google Scholar 

  47. Brown, J. L., Jaquenoud, M., Gulli, M. P., Chant, J. & Peter, M. Novel Cdc42-binding proteins Gic1 and Gic2 control cell polarity in yeast. Genes Dev. 11, 2972–2982 (1997).

    Article  CAS  Google Scholar 

  48. Gulli, M. et al. Phosphorylation of the Cdc42 exchange factor Cdc24 by the PAK-like kinase Cla4 may regulate polarized growth in yeast. Mol. Cell 6, 1155–1167 (2000).

    Article  CAS  Google Scholar 

  49. Ellenberg, J. & Lippincott-Schwartz, J. in Cells: A Laboratory Manual (eds Spector, D., Goldman, R. & Leinwand, L.) 79.1–79.23 (Cold Spring Harbor Laboratory Press, 1998).

    Google Scholar 

Download references

Acknowledgements

We thank P. Pryciak, G. Ammerer, M. Tyers, P. Nurse and E. Leberer for providing plasmids, strains and antibodies, and J. Ellenberger for helpful suggestions about FRAP and FLIP. We are grateful to T. Laroche and M. Allegrini for help with microscopy, N. Perrinjaquet for expert technical assistance, members of the group for stimulating discussion, and R. Iggo and P. Gönczy for critical reading of the manuscript. M.P. is supported by the Swiss National Science Foundation, the Swiss Cancer League and a Helmut Horten Incentive Award.

Author information

Authors and Affiliations

Authors

Supplementary information

Supplementary figures and tables

Figure S1 Nuclear transport of Fus3p–GFP in wild-type cells as assayed by FRAP does not change within 2 h after addition of α-factor. (PDF 241 kb)

Figure S2 Expression of the GFP-tagged proteins does not interfere significantly with pheromone signalling when expressed in wild-type cells.

Supplementary tables

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Drogen, F., Stucke, V., Jorritsma, G. et al. MAP kinase dynamics in response to pheromones in budding yeast. Nat Cell Biol 3, 1051–1059 (2001). https://doi.org/10.1038/ncb1201-1051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1201-1051

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing