Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

DNA replication timing: random thoughts about origin firing

Regions of metazoan genomes replicate at defined times within S phase. This observation suggests that replication origins fire with a defined timing pattern that remains the same from cycle to cycle. However, an alterative model based on the stochastic firing of origins may also explain replication timing. This model assumes varying origin efficiency instead of a strict origin-timing programme. Here, we discuss the evidence for both models.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The random gap problem.
Figure 2: A progressive increase in origin efficiency solves the random gap problem.
Figure 3: Differences in the relative efficiency of stochastic origins can produce defined replication-timing patterns.

References

  1. Jacob, F. & Brenner, S. On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon. C. R. Hebd. Seances. Acad. Sci. 256, 298–300 (1963).

    CAS  PubMed  Google Scholar 

  2. Harland, R. M. & Laskey, R. A. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21, 761–771 (1980).

    Article  CAS  Google Scholar 

  3. Blumenthal, A. B., Kriegstein, H. J. & Hogness, D. S. The units of DNA replication in Drosophila melanogaster chromosomes. Cold Spring Harb. Symp. Quant. Biol. 38, 205–223 (1974).

    Article  CAS  Google Scholar 

  4. Gilbert, D. M. Making sense of eukaryotic DNA replication origins. Science 294, 96–100 (2001).

    Article  CAS  Google Scholar 

  5. DePamphilis, M. L. Replication origins in metazoan chromosomes: fact or fiction? Bioessays 21, 5–16 (1999).

    Article  CAS  Google Scholar 

  6. Hyrien, O., Marheineke, K. & Goldar, A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays 25, 116–125 (2003).

    Article  CAS  Google Scholar 

  7. Dijkwel, P. A. & Hamlin, J. L. The Chinese hamster dihydrofolate reductase origin consists of multiple potential nascent-strand start sites. Mol. Cell Biol. 15, 3023–3031 (1995).

    Article  CAS  Google Scholar 

  8. Patel, P. K., Arcangioli, B., Baker, S. P., Bensimon, A. & Rhind, N. DNA replication origins fire stochastically in fission yeast. Mol. Biol. Cell 17, 308–316 (2006).

    Article  CAS  Google Scholar 

  9. Herrick, J., Stanislawski, P., Hyrien, O. & Bensimon, A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J. Mol. Biol. 300, 1133–1142 (2000).

    Article  CAS  Google Scholar 

  10. Fangman, W. L. & Brewer, B. J. Activation of replication origins within yeast chromosomes. Annu. Rev. Cell Biol. 7, 375–402 (1991).

    Article  CAS  Google Scholar 

  11. Newlon, C. S. et al. Analysis of a circular derivative of Saccharomyces cerevisiae chromosome III: a physical map and identification and location of ARS elements. Genetics 129, 343–357 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115–121 (2001).

    Article  CAS  Google Scholar 

  13. Dubey, D. D., Zhu, J., Carlson, D. L., Sharma, K. & Huberman, J. A. Three ARS elements contribute to the ura4 replication origin region in the fission yeast, Schizosaccharomyces pombe. EMBO J. 13, 3638–3647 (1994).

    Article  CAS  Google Scholar 

  14. Dijkwel, P. A., Wang, S. & Hamlin, J. L. Initiation sites are distributed at frequent intervals in the Chinese hamster dihydrofolate reductase origin of replication but are used with very different efficiencies. Mol. Cell Biol. 22, 3053–3065 (2002).

    Article  CAS  Google Scholar 

  15. Drouin, R., Lemieux, N. & Richer, C. L. Analysis of DNA replication during S-phase by means of dynamic chromosome banding at high resolution. Chromosoma 99, 273–280 (1990).

    Article  CAS  Google Scholar 

  16. Sadoni, N., Cardoso, M. C., Stelzer, E. H., Leonhardt, H. & Zink, D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J. Cell Sci. 117, 5353–5365 (2004).

    Article  CAS  Google Scholar 

  17. Taljanidisz, J., Popowski, J. & Sarkar, N. Temporal order of gene replication in Chinese hamster ovary cells. Mol. Cell Biol. 9, 2881–2889 (1989).

    Article  CAS  Google Scholar 

  18. MacAlpine, D. M., Rodriguez, H.K. & Bell, S. P. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18, 3094–3105 (2004).

    Article  CAS  Google Scholar 

  19. Woodfine, K. et al. Replication timing of human chromosome 6. Cell Cycle 4, 172–176 (2005).

    Article  CAS  Google Scholar 

  20. Woodfine, K. et al. Replication timing of the human genome. Hum. Mol. Genet. 13, 191–202 (2004).

    Article  CAS  Google Scholar 

  21. Donaldson, A. D. Shaping time: chromatin structure and the DNA replication programme. Trends Genet. 21, 444–449 (2005).

    Article  CAS  Google Scholar 

  22. Laskey, R. A. Chromosome replication in early development of Xenopus laevis. J. Embryol. Exp. Morphol. 89, 285–296 (1985).

    PubMed  Google Scholar 

  23. Herrick, J., Jun, S., Bechhoefer, J. & Bensimon, A. Kinetic model of DNA replication in eukaryotic organisms. J. Mol. Biol. 320, 741–750 (2002).

    Article  CAS  Google Scholar 

  24. Marheineke, K. & Hyrien, O. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J. Biol. Chem. 276, 17092–17100 (2001).

    Article  CAS  Google Scholar 

  25. Lucas, I., Chevrier-Miller, M., Sogo, J. M. & Hyrien, O. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J. Mol. Biol. 296, 769–786 (2000).

    Article  CAS  Google Scholar 

  26. Jun, S., Herrick, J., Bensimon, A. & Bechhoefer, J. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment. Cell Cycle 3, 223–229 (2004).

    Article  CAS  Google Scholar 

  27. Takeda, D. Y. & Dutta, A. DNA replication and progression through S phase. Oncogene 24, 2827–2843 (2005).

    Article  CAS  Google Scholar 

  28. Diffley, J. F. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 10, 2819–2830 (1996).

    Article  CAS  Google Scholar 

  29. Edwards, M. C. et al. MCM2-7 complexes bind chromatin in a distributed pattern surrounding the origin recognition complex in Xenopus egg extracts. J. Biol. Chem. 277, 33049–33057 (2002).

    Article  CAS  Google Scholar 

  30. Diaz-Martinez, L. & Clarke, D. J. Self-regulating model for control of replication origin firing in budding yeast. Cell Cycle 2, 576–578 (2003).

    Article  CAS  Google Scholar 

  31. Shechter, D. & Gautier, J. ATM and ATR Check in on origins: a dynamic model for origin selection and activation. Cell Cycle 4, 235–238 (2005).

    Article  CAS  Google Scholar 

  32. Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602–606 (2002).

    Article  CAS  Google Scholar 

  33. Marheineke, K. & Hyrien, O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J. Biol. Chem. 279, 28071–28081 (2004).

    Article  CAS  Google Scholar 

  34. Shechter, D., Costanzo, V. & Gautier, J. ATR and ATM regulate the timing of DNA replication origin firing. Nature Cell Biol. 6, 648–655 (2004).

    Article  CAS  Google Scholar 

  35. Miao, H., Seiler, J. & Burhans, W. C. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J. Biol. Chem. 278, 4295–4304 (2003).

    Article  CAS  Google Scholar 

  36. Sorensen, C. S., Syljuasen, R. G., Lukas, J. & Bartek, J. ATR, Claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle 3, 941–945 (2004).

    Article  CAS  Google Scholar 

  37. Ferguson, B. M., Brewer, B. J., Reynolds, A. E. & Fangman, W. L. A yeast origin of replication is activated late in S phase. Cell 65, 507–515 (1991).

    Article  CAS  Google Scholar 

  38. Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377–383 (2002).

    Article  CAS  Google Scholar 

  39. Gilbert, N. et al. Chromatin architecture of the human genome: gene-rich domains are enriched in open chromatin fibers. Cell 118, 555–566 (2004).

    Article  CAS  Google Scholar 

  40. Vogelauer, M., Rubbi, L., Lucas, I., Brewer, B.J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223–1233 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I am grateful to J. Bechhoefer, D. Clarke, B. Kobertz and M. Munson for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rhind, N. DNA replication timing: random thoughts about origin firing. Nat Cell Biol 8, 1313–1316 (2006). https://doi.org/10.1038/ncb1206-1313

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1206-1313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing