Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development

Abstract

Regulating ribosome number is thought to control cellular growth1. Synthesis of ribosomal RNA (rRNA) is a limiting step in ribosome biogenesis and rates of rRNA synthesis are generally altered depending on the growth status of a cell2,3. Although studies in unicellular systems have addressed the mechanisms by which this occurs4,5, few studies have applied a genetic approach to examine growth-dependent control of rRNA synthesis in metazoans. Here, we show that in Drosophila melanogaster Myc (dMyc) is a regulator of rRNA synthesis. Expression of dMyc is both necessary and sufficient to control rRNA synthesis and ribosome biogenesis during larval development. Stimulation of rRNA synthesis by dMyc is mediated through a rapid, coordinated increase in the levels of the Pol I transcriptional machinery. In addition, the growth effects of dMyc in larval wing imaginal discs require de novo rRNA synthesis. We suggest that during animal development, the control of rRNA synthesis and ribosome biogenesis is an essential Myc function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pol I activity is required for normal development and growth.
Figure 2: dMyc regulates rRNA synthesis during D. melanogaster development.
Figure 3: Overexpression of dMyc increases nucleolar size and cellular ribosome content in salivary-gland cells.
Figure 4: dMyc overexpression increases levels of the rRNA transcriptional machinery.
Figure 5: dMyc requires increased rRNA synthesis for growth.

Similar content being viewed by others

References

  1. Rudra, D. & Warner, J.R. What better measure than ribosome synthesis? Genes Dev. 18, 2431–2436 (2004).

    Article  CAS  Google Scholar 

  2. Grummt, I. Life on a planet of its own: regulation of RNA polymerase I transcription in the nucleolus. Genes Dev. 17, 1691–1702 (2003).

    Article  CAS  Google Scholar 

  3. Moss, T. & Stefanovsky, V.Y. At the center of eukaryotic life. Cell 109, 545–548 (2002).

    Article  CAS  Google Scholar 

  4. Warner, J.R. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24, 437–440 (1999).

    Article  CAS  Google Scholar 

  5. Nomura, M. Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles. J. Bacteriol. 181, 6857–6864 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Saucedo, L.J. & Edgar, B.A. Why size matters: altering cell size. Curr. Opin. Genet. Dev. 12, 565–571 (2002).

    Article  CAS  Google Scholar 

  7. Seifarth, W. et al. Identification of the genes coding for the second-largest subunits of RNA polymerases I and III of Drosophila melanogaster. Mol. Gen. Genet. 228, 424–432 (1991).

    Article  CAS  Google Scholar 

  8. Campbell, G. & Tomlinson, A. The roles of the homeobox genes aristaless and Distal-less in patterning the legs and wings of Drosophila. Development 125, 4483–4493 (1998).

    CAS  PubMed  Google Scholar 

  9. Lambertsson, A. The minute genes in Drosophila and their molecular functions. Adv. Genet. 38, 69–134 (1998).

    Article  CAS  Google Scholar 

  10. Grandori, C., Cowley, S.M. James, L.P. Eisenman, R.N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell. Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  11. Gallant, P., Shiio, Y., Cheng, P.F., Parkhurst, S. M. & Eisenman, R. N. Myc and Max homologs in Drosophila. Science 274, 1523–1527 (1996).

    Article  CAS  Google Scholar 

  12. Johnston, L.A., Prober, D. A., Edgar, B. A., Eisenman, R. N. & Gallant, P. Drosophila myc regulates cellular growth during development. Cell 98, 779–790 (1999).

    Article  CAS  Google Scholar 

  13. Maines, J.Z., Stevens, L.M., Tong, X. & Stein, D. Drosophila dMyc is required for ovary cell growth and endoreplication. Development 131, 775–786 (2004).

    Article  CAS  Google Scholar 

  14. Schreiber-Agus, N. et al. Drosophila Myc is oncogenic in mammalian cells and plays a role in the diminutive phenotype. Proc. Natl Acad. Sci. USA 94, 1235–1240 (1997).

    Article  CAS  Google Scholar 

  15. Pierce, S.B. et al. dMyc is required for larval growth and endoreplication in Drosophila. Development 131, 2317–2327 (2004).

    Article  CAS  Google Scholar 

  16. Moberg, K.H. Mukherjee, A., Veraska, A., Artavanis-Tsakonas, S. & Hariharan, I.K. The Drosophila F Box protein Archipelago regulates dMyc protein levels in vivo. Curr. Biol. 14, 965–974 (2004).

    Article  CAS  Google Scholar 

  17. Moreno, E. & Basler, K. dMyc transforms cells into super-competitors. Cell 117, 117–129 (2004).

    Article  CAS  Google Scholar 

  18. de la Cova, C., Abril, M., Bellosta, P., Gallant, P. & Johnston, L.A. Drosophila myc regulates organ size by inducing cell competition. Cell 117, 107–116 (2004).

    Article  CAS  Google Scholar 

  19. Orian, A. et al. Genomic binding by the Drosophila Myc, Max, Mad/Mnt transcription factor network. Genes Dev. 17, 1101–1114 (2003).

    Article  CAS  Google Scholar 

  20. Zaffran, S. et al. A Drosophila RNA helicase gene, pitchoune, is required for cell growth and proliferation and is a potential target of d-Myc. Development 125, 3571–3584 (1998).

    CAS  Google Scholar 

  21. Perrin, L., Benassayag, C., Morello, D., Pradel, J. & Montagne, J. Modulo is a target of Myc selectively required for growth of proliferative cells in Drosophila. Mech. Dev. 120, 645–655 (2003).

    Article  CAS  Google Scholar 

  22. Kim, S., Li, Q., Dang, C.V. & Lee, L.A. Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc. Natl Acad. Sci. USA 97, 11198–11202 (2000).

    Article  CAS  Google Scholar 

  23. Boon, K. et al. N-myc enhances the expression of a large set of genes functioning in ribosome biogenesis and protein synthesis. EMBO J. 20, 1383–1393 (2001).

    Article  CAS  Google Scholar 

  24. Coller, H.A. et al. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc. Natl Acad. Sci. USA 97, 3260–3265 (2000).

    Article  CAS  Google Scholar 

  25. Guo, Q.M. et al. Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res. 60, 5922–5928 (2000).

    CAS  Google Scholar 

  26. Schlosser, I. et al. A role for c-Myc in the regulation of ribosomal RNA processing. Nucleic Acids Res. 31, 6148–6156 (2003).

    Article  CAS  Google Scholar 

  27. Lieb, J.D., Liu, X. Botstein, D. & Brown, P. O. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein-DNA association. Nature Genet. 28, 327–334 (2001).

    Article  CAS  Google Scholar 

  28. Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J. & Tyers, M. Systematic identification of pathways that couple cell growth and division in yeast. Science 297, 395–400 (2002).

    Article  CAS  Google Scholar 

  29. Gomez-Roman, N., Grandori, C., Eisenman, R.N. & White, R.J. Direct activation of RNA polymerase III transcription by c-Myc. Nature 421, 290–294 (2003).

    Article  CAS  Google Scholar 

  30. van Steensel, B. & Henikoff, S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nature Biotechnol. 18, 424–428 (2000).

    Article  CAS  Google Scholar 

  31. Lee, T. & Luo, L. Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends Neurosci. 24, 251–254 (2001).

    Article  CAS  Google Scholar 

  32. Prober, D.A. & Edgar, B.A. Ras1 promotes cellular growth in the Drosophila wing. Cell 100, 435–446 (2000).

    Article  CAS  Google Scholar 

  33. Polymenis, M. & Schmidt, E.V. Coupling of cell division to cell growth by translational control of the G1 cyclin CLN3 in yeast. Genes Dev. 11, 2522–2531 (1997).

    Article  CAS  Google Scholar 

  34. Daga, R.R. & Jimenez, J. Translational control of the cdc25 cell cycle phosphatase: a molecular mechanism coupling mitosis to cell growth. J. Cell Sci. 112, 3137–3146 (1999).

    CAS  PubMed  Google Scholar 

  35. Derenzini, M. et al. Nucleolar function and size in cancer cells. Am. J. Pathol. 152, 1291–1297 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ruggero, D. & Pandolfi, P.P. Does the ribosome translate cancer? Nature Rev. Cancer 3, 179–192 (2003).

    Article  CAS  Google Scholar 

  37. Aris, J.P. & Blobel, G. Identification and characterization of a yeast nucleolar protein that is similar to a rat liver nucleolar protein. J. Cell Biol. 107, 17–31 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank L. Saucedo, C. Grandori and R. White for helpful advice and comments on the manuscript and C. Grandori and R. White for sharing unpublished data. S.S.G. is supported by a research fellowship from the SASS Foundation for Medical Research. A.O. is a Leukemia & Lymphoma Society Special Fellow. R.N.E is an American Cancer Society Research Professor. This work was supported by a National Institutes of Health (NIH)/National Cancer Institute grant R01CA57138 (to R.N.E.) and an NIH grant GM51186 (to B.A.E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce A. Edgar.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information S1

Supplementary figures S1, S2 and S3 (PDF 241 kb)

Supplementary information S2

Supplementary table S1 (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grewal, S., Li, L., Orian, A. et al. Myc-dependent regulation of ribosomal RNA synthesis during Drosophila development. Nat Cell Biol 7, 295–302 (2005). https://doi.org/10.1038/ncb1223

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb1223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing